ModernGL¶
ModernGL is a high performance rendering module for Python.
Install¶
From PyPI (pip)¶
ModernGL is available on PyPI for Windows, OS X and Linux as pre-built wheels. No complication is needed unless you are setting up a development environment.
$ pip install moderngl
Verify that the package is working:
$ python -m moderngl
moderngl 5.6.0
--------------
vendor: NVIDIA Corporation
renderer: GeForce RTX 2080 SUPER/PCIe/SSE2
version: 3.3.0 NVIDIA 441.87
python: 3.7.6 (tags/v3.7.6:43364a7ae0, Dec 19 2019, 00:42:30) [MSC v.1916 64 bit (AMD64)]
platform: win32
code: 330
Note
If you can only run in headless mode this might not work
out of the box. You might need to set up xvfb
and possibly supply more arguments during context creation.
More info can be found in later sections.
Development environment¶
Ideally you want to fork the repository first.
# .. or clone for your fork
git clone https://github.com/moderngl/moderngl.git
cd moderngl
Building on various platforms:
- On Windows you need visual c++ build tools installed: https://visualstudio.microsoft.com/visual-cpp-build-tools/
- On OS X you need X Code installed + command line tools
(
xcode-select --install
) - Building on linux should pretty much work out of the box
The Guide¶
A short introduction¶
What you will need?
To get something rendered, you will need a VertexArray
.
VertexArrays can be created from a Program
object and several
Buffer
objects.
To create a Program
object, you will need some Shader
objects.
Once you have your Program
object, you can fill a
Buffer
with your data,
then pass them to VertexArray
, then call
VertexArray.render()
.
All of the objects above can only be created from a Context
object.
Here is our checklist:
- Install ModernGL.
- Create a Context.
- Create a Program object.
- Create a VertexArray object.
Proceed to the next step.
Install ModernGL¶
$ pip install --upgrade ModernGL
This tutorial will also use numpy
to generate data and Pillow
to save the final image.
$ pip install --upgrade numpy Pillow
Proceed to the next step.
Context Creation¶
Note
From moderngl 5.6 context creation is handled by the glcontext package. This makes expanding context support easier for users lowering the bar for contributions. It also means context creation is no longer limited by a moderngl releases.
Note
This page might not list all supported backends as the glcontext project keeps evolving. If using anything outside of the default contexts provided per OS, please check the listed backends in the glcontext project.
Introduction¶
A context is an object giving moderngl access to opengl instructions (greatly simplified). How a context is created depends on your operating system and what kind of platform you want to target.
In the vast majority of cases you’ll be using the default context
backend supported by your operating system. This backend will be
automatically selected unless a specific backend
parameter is used.
Default backend per OS
- Windows: wgl / opengl32.dll
- Linux: x11/glx/libGL
- OS X: CGL
These default backends support two modes:
- Detecting an exiting active context possibly created by a window library such as glfw, sdl2, pyglet etc.
- Creating a headless context (No visible window)
Attaching to an existing active context created by a window library:
import moderngl
# .. do window initialization here
ctx = moderngl.create_context()
# If successful we can now render to the window
print("Default framebuffer is:", ctx.screen)
Creating a headless context:
import moderngl
# Create the context
ctx = moderngl.create_context(standalone=True)
# Create a framebuffer we can render to
fbo = ctx.simple_framebuffer((100, 100), 4)
fbo.use()
Require a minimum OpenGL version¶
ModernGL only support 3.3+ contexts. By default version 3.3 is passed in as the minimum required version of the context returned by the backend.
To require a specific version:
moderngl.create_context(require=430)
This will require OpenGL 4.3. If a lower context version is returned the context creation will fail.
This attribute can be accessed in Context.version_code
and will be updated to contain the actual version code of the
context (If higher than required).
Specifying context backend¶
A backend
can be passed in for more advanced usage.
For example: Making a headless EGL context on linux:
ctx = moderngl.create_context(standalone=True, backend='egl')
Note
Each backend supports additional keyword arguments for more advanced configuration. This can for example be the exact name of the library to load. More information in the glcontext docs.
Context sharing¶
Warning
Object sharing is an experimental feature
Some context support the share
parameters enabling
object sharing between contexts. This is not needed
if you are attaching to existing context with share mode enabled.
For example if you create two windows with glfw enabling object sharing.
ModernGL objects (such as moderngl.Buffer
, moderngl.Texture
, ..)
has a ctx
property containing the context they were created in.
Still ModernGL do not check what context is currently active when
accessing these objects. This means the object can be used
in both contexts when sharing is enabled.
This should in theory work fine with object sharing enabled:
data1 = numpy.array([1, 2, 3, 4], dtype='u1')
data2 = numpy.array([4, 3, 2, 1], dtype='u1')
ctx1 = moderngl.create_context(standalone=True)
ctx2 = moderngl.create_context(standalone=True, share=True)
with ctx1 as ctx:
b1 = ctx.buffer(data1)
with ctx2 as ctx:
b2 = ctx.buffer(data2)
print(b1.glo) # Displays: 1
print(b2.glo) # Displays: 2
with ctx1:
print(b1.read())
print(b2.read())
with ctx2:
print(b1.read())
print(b2.read())
Still, there are some limitations to object sharing. Especially objects that reference other objects (framebuffer, vertex array object, etc.)
More information for a deeper dive:
Buffer Format¶
Description¶
A buffer format is a short string describing the layout of data in a vertex buffer object (VBO).
A VBO often contains a homogeneous array of C-like structures. The buffer
format describes what each element of the array looks like. For example,
a buffer containing an array of high-precision 2D vertex positions might have
the format "2f8"
- each element of the array consists of two floats, each
float being 8 bytes wide, ie. a double.
Buffer formats are used in the Context.vertex_array()
constructor,
as the 2nd component of the content arg.
See the Example of simple usage below.
Syntax¶
A buffer format looks like:
[count]type[size] [[count]type[size]...] [/usage]
Where:
count
is an optional integer. If omitted, it defaults to1
.type
is a single character indicating the data type:f
floati
intu
unsigned intx
padding
size
is an optional number of bytes used to store the type. If omitted, it defaults to 4 for numeric types, or to 1 for padding bytes.A format may contain multiple, space-separated
[count]type[size]
triples (See the Example of single interleaved array), followed by:/usage
is optional. It should be preceded by a space, and then consists of a slash followed by a single character, indicating how successive values in the buffer should be passed to the shader:/v
per vertex. Successive values from the buffer are passed to each vertex. This is the default behavior if usage is omitted./i
per instance. Successive values from the buffer are passed to each instance./r
per render. the first buffer value is passed to every vertex of every instance. ie. behaves like a uniform.
When passing multiple VBOs to a VAO, the first one must be of usage
/v
, as shown in the Example of multiple arrays with differing /usage.
Valid combinations of type and size are:
size | ||||
---|---|---|---|---|
type | 1 | 2 | 4 | 8 |
f | Unsigned byte (normalized) | Half float | Float | Double |
i | Byte | Short | Int | - |
u | Unsigned byte | Unsigned short | Unsigned int | - |
x | 1 byte | 2 bytes | 4 bytes | 8 bytes |
The entry f1
has two unusual properties:
- Its type is
f
(for float), but it defines a buffer containing unsigned bytes. For this size of floats only, the values are normalized, ie. unsigned bytes from 0 to 255 in the buffer are converted to float values from 0.0 to 1.0 by the time they reach the vertex shader. This is intended for passing in colors as unsigned bytes. - Three unsigned bytes, with a format of
3f1
, may be assigned to avec3
attribute, as one would expect. But, from ModernGL v6.0, they can alternatively be passed to avec4
attribute. This is intended for passing a buffer of 3-byte RGB values into an attribute which also contains an alpha channel.
There are no size 8 variants for types i
and u
.
This buffer format syntax is specific to ModernGL. As seen in the usage
examples below, the formats sometimes look similar to the format strings passed
to struct.pack
, but that is a different syntax (documented here.)
Buffer formats can represent a wide range of vertex attribute formats.
For rare cases of specialized attribute formats that are not expressible
using buffer formats, there is a VertexArray.bind()
method, to
manually configure the underlying OpenGL binding calls. This is not generally
recommended.
Examples¶
Example buffer formats¶
"2f"
has a count of 2
and a type of f
(float). Hence it describes
two floats, passed to a vertex shader’s vec2
attribute. The size of the
floats is unspecified, so defaults to 4
bytes. The usage of the buffer is
unspecified, so defaults to /v
(vertex), meaning each successive pair of
floats in the array are passed to successive vertices during the render call.
"3i2/i"
means three i
(integers). The size of each integer is 2
bytes, ie. they are shorts, passed to an ivec3
attribute.
The trailing /i
means that consecutive values
in the buffer are passed to successive instances during an instanced render
call. So the same value is passed to every vertex within a particular instance.
Buffers contining interleaved values are represented by multiple space separated count-type-size triples. Hence:
"2f 3u x /v"
means:
2f
: two floats, passed to avec2
attribute, followed by3u
: three unsigned bytes, passed to auvec3
, thenx
: a single byte of padding, for alignment.
The /v
indicates successive elements in the buffer are passed to successive
vertices during the render. This is the default, so the /v
could be
omitted.
Example of simple usage¶
Consider a VBO containing 2D vertex positions, forming a single triangle:
# a 2D triangle (ie. three (x, y) vertices)
verts = [
0.0, 0.9,
-0.5, 0.0,
0.5, 0.0,
]
# pack all six values into a binary array of C-like floats
verts_buffer = struct.pack("6f", *verts)
# put the array into a VBO
vbo = ctx.buffer(verts_buffer)
# use the VBO in a VAO
vao = ctx.vertex_array(
shader_program,
[
(vbo, "2f", "in_vert"), # <---- the "2f" is the buffer format
]
index_buffer_object
)
The line (vbo, "2f", "in_vert")
, known as the VAO content, indicates that
vbo
contains an array of values, each of which consists of two floats.
These values are passed to an in_vert
attribute,
declared in the vertex shader as:
in vec2 in_vert;
The "2f"
format omits a size
component, so the floats default to
4-bytes each. The format also omits the trailing /usage
component, which
defaults to /v
, so successive (x, y) rows from the buffer are passed to
successive vertices during the render call.
Example of single interleaved array¶
A buffer array might contain elements consisting of multiple interleaved values.
For example, consider a buffer array, each element of which contains a 2D vertex position as floats, an RGB color as unsigned ints, and a single byte of padding for alignment:
position | color | padding | |||
x | y | r | g | b | - |
float | float | unsigned byte | unsigned byte | unsigned byte | byte |
Such a buffer, however you choose to contruct it, would then be passed into a VAO using:
vao = ctx.vertex_array(
shader_program,
[
(vbo, "2f 3f1 x", "in_vert", "in_color")
]
index_buffer_object
)
The format starts with 2f
, for the two position floats, which will
be passed to the shader’s in_vert
attribute, declared as:
in vec2 in_vert;
Next, after a space, is 3f1
, for the three color unsigned bytes, which
get normalized to floats by f1
. These floats will be passed to the shader’s
in_color
attribute:
in vec3 in_color;
Finally, the format ends with x
, a single byte of padding, which needs
no shader attribute name.
Example of multiple arrays with differing /usage
¶
To illustrate the trailing /usage
portion, consider rendering a dozen cubes
with instanced rendering. We will use:
vbo_verts_normals
contains vertices (3 floats) and normals (3 floats) for the vertices within a single cube.vbo_offset_orientation
contains offsets (3 floats) and orientations (9 float matrices) that are used to position and orient each cube.vbo_colors
contains colors (3 floats). In this example, there is only one color in the buffer, that will be used for every vertex of every cube.
Our shader will take all the above values as attributes.
We bind the above VBOs in a single VAO, to prepare for an instanced rendering call:
vao = ctx.vertex_array(
shader_program,
[
(vbo_verts_normals, "3f 3f /v", "in_vert", "in_norm"),
(vbo_offset_orientation, "3f 9f /i", "in_offset", "in_orientation"),
(vbo_colors, "3f /r", "in_color"),
]
index_buffer_object
)
So, the vertices and normals, using /v
, are passed to each vertex within
an instance. This fulfills the rule tha the first VBO in a VAO must have usage
/v
. These are passed to vertex attributes as:
in vec3 in_vert;
in vec3 in_norm;
The offsets and orientations pass the same value to each vertex within an instance, but then pass the next value in the buffer to the vertices of the next instance. Passed as:
in vec3 in_offset;
in mat3 in_orientation;
The single color is passed to every vertex of every instance.
If we had stored the color with /v
or /i
, then we would have had to
store duplicate identical color values in vbo_colors - one per instance or
one per vertex. To render all our cubes in a single color, this is needless
duplication. Using /r
, only one color is require the buffer, and it is
passed to every vertex of every instance for the whole render call:
in vec3 in_color;
An alternative approach would be to pass in the color as a uniform, since it is constant. But doing it as an attribute is more flexible. It allows us to reuse the same shader program, bound to a different buffer, to pass in color data which varies per instance, or per vertex.
Program¶
ModernGL is different from standard plotting libraries. You can define your own shader program to render stuff. This could complicate things, but also provides freedom on how you render your data.
Here is a sample program that passes the input vertex coordinates as is to screen coordinates.
Screen coordinates are in the [-1, 1], [-1, 1] range for x and y axes. The (-1, 1) point is the lower left corner of the screen.

The screen coordinates
The program will also process a color information.
Entire source
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import moderngl
ctx = moderngl.create_standalone_context()
prog = ctx.program(
vertex_shader='''
#version 330
in vec2 in_vert;
in vec3 in_color;
out vec3 v_color;
void main() {
v_color = in_color;
gl_Position = vec4(in_vert, 0.0, 1.0);
}
''',
fragment_shader='''
#version 330
in vec3 v_color;
out vec3 f_color;
void main() {
f_color = v_color;
}
''',
)
|
Vertex Shader
in vec2 in_vert;
in vec3 in_color;
out vec3 v_color;
void main() {
v_color = in_color;
gl_Position = vec4(in_vert, 0.0, 1.0);
}
Fragment Shader
in vec3 v_color;
out vec3 f_color;
void main() {
f_color = v_color;
}
Proceed to the next step.
VertexArray¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | import moderngl
import numpy as np
ctx = moderngl.create_standalone_context()
prog = ctx.program(
vertex_shader='''
#version 330
in vec2 in_vert;
in vec3 in_color;
out vec3 v_color;
void main() {
v_color = in_color;
gl_Position = vec4(in_vert, 0.0, 1.0);
}
''',
fragment_shader='''
#version 330
in vec3 v_color;
out vec3 f_color;
void main() {
f_color = v_color;
}
''',
)
x = np.linspace(-1.0, 1.0, 50)
y = np.random.rand(50) - 0.5
r = np.ones(50)
g = np.zeros(50)
b = np.zeros(50)
vertices = np.dstack([x, y, r, g, b])
vbo = ctx.buffer(vertices.astype('f4').tobytes())
vao = ctx.simple_vertex_array(prog, vbo, 'in_vert', 'in_color')
|
Proceed to the next step.
Rendering¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | import moderngl
import numpy as np
from PIL import Image
ctx = moderngl.create_standalone_context()
prog = ctx.program(
vertex_shader='''
#version 330
in vec2 in_vert;
in vec3 in_color;
out vec3 v_color;
void main() {
v_color = in_color;
gl_Position = vec4(in_vert, 0.0, 1.0);
}
''',
fragment_shader='''
#version 330
in vec3 v_color;
out vec3 f_color;
void main() {
f_color = v_color;
}
''',
)
x = np.linspace(-1.0, 1.0, 50)
y = np.random.rand(50) - 0.5
r = np.ones(50)
g = np.zeros(50)
b = np.zeros(50)
vertices = np.dstack([x, y, r, g, b])
vbo = ctx.buffer(vertices.astype('f4').tobytes())
vao = ctx.simple_vertex_array(prog, vbo, 'in_vert', 'in_color')
fbo = ctx.simple_framebuffer((512, 512))
fbo.use()
fbo.clear(0.0, 0.0, 0.0, 1.0)
vao.render(moderngl.LINE_STRIP)
Image.frombytes('RGB', fbo.size, fbo.read(), 'raw', 'RGB', 0, -1).show()
|
Headless on Ubuntu 18 Server¶
Dependencies¶
Headless rendering can be achieved with EGL or X11. We’ll cover both cases.
Starting with fresh ubuntu 18 server install we need to install required packages:
sudo apt-install python3-pip mesa-utils libegl1-mesa xvfb
This should install mesa an diagnostic tools if needed later.
mesa-utils
installs libgl1-mesa and tools likeglxinfo`
libegl1-mesa
is optional if using EGL instead of X11
Creating a context¶
The libraries we are going to interact with has the following locations:
/usr/lib/x86_64-linux-gnu/libGL.so.1
/usr/lib/x86_64-linux-gnu/libX11.so.6
/usr/lib/x86_64-linux-gnu/libEGL.so.1
Double check what library versions you actually have installed
and make modifications to what versions we refer to below.
moderngl will attempt to load libGL.so
, libX11.so
and libEGL.so
by default.
Optionally you can create symlinks or use python to locate the desired
lib files. For simplicity we will be using the exact library names.
Before we can create a context we to run a virtual display:
export DISPLAY=:99.0
Xvfb :99 -screen 0 640x480x24 &
Now we can create a context with x11 or egl:
# X11
import moderngl
ctx = moderngl.create_context(
standalone=True,
libgl='libGL.so.1',
libx11='libX11.so.6',
)
# EGL
import moderngl
ctx = moderngl.create_context(
standalone=True,
backend='egl',
libgl='libGL.so.1',
libegl='libEGL.so.1',
)
Running an example¶
Checking that everything works can be done with a basic triangle example.
Install dependencies:
pip3 install moderngl numpy pyrr pillow
The following example renders a triangle and writes it to a png file so we can verify the contents.

import moderngl
import numpy as np
from PIL import Image
from pyrr import Matrix44
# -------------------
# CREATE CONTEXT HERE
# -------------------
prog = ctx.program(vertex_shader="""
#version 330
uniform mat4 model;
in vec2 in_vert;
in vec3 in_color;
out vec3 color;
void main() {
gl_Position = model * vec4(in_vert, 0.0, 1.0);
color = in_color;
}
""",
fragment_shader="""
#version 330
in vec3 color;
out vec4 fragColor;
void main() {
fragColor = vec4(color, 1.0);
}
""")
vertices = np.array([
-0.6, -0.6,
1.0, 0.0, 0.0,
0.6, -0.6,
0.0, 1.0, 0.0,
0.0, 0.6,
0.0, 0.0, 1.0,
], dtype='f4')
vbo = ctx.buffer(vertices)
vao = ctx.simple_vertex_array(prog, vbo, 'in_vert', 'in_color')
fbo = ctx.framebuffer(color_attachments=[ctx.texture((512, 512), 4)])
fbo.use()
ctx.clear()
prog['model'].write(Matrix44.from_eulers((0.0, 0.1, 0.0), dtype='f4'))
vao.render(moderngl.TRIANGLES)
data = fbo.read(components=3)
image = Image.frombytes('RGB', fbo.size, data)
image = image.transpose(Image.FLIP_TOP_BOTTOM)
image.save('output.png')
Reference¶
Context¶
-
class
moderngl.
Context
¶ Class exposing OpenGL features. ModernGL objects can be created from this class.
Create¶
-
moderngl.
create_context
(require=None) → Context¶ Create a ModernGL context by loading OpenGL functions from an existing OpenGL context. An OpenGL context must exists.
Example:
# Accept the current context version ctx = moderngl.create_context() # Require at least OpenGL 4.3 ctx = moderngl.create_context(require=430) # Create a headless context requiring OpenGL 4.3 ctx = moderngl.create_context(require=430, standalone=True)
Keyword Arguments: - require (int) – OpenGL version code (default: 330)
- standalone (bool) – Headless flag
- **settings – Other backend specific settings
Returns: Context
object
-
moderngl.
create_standalone_context
(require=None) → Context¶ Create a standalone ModernGL context. The preferred way to make a context ``
Example:
# Create a context with highest possible supported version ctx = moderngl.create_context() # Require at least OpenGL 4.3 ctx = moderngl.create_context(require=430)
Keyword Arguments: require (int) – OpenGL version code. Returns: Context
object
ModernGL Objects¶
-
Context.
program
(vertex_shader, fragment_shader=None, geometry_shader=None, tess_control_shader=None, tess_evaluation_shader=None, varyings=()) → Program¶ Create a
Program
object.Only linked programs will be returned.
A single shader in the shaders parameter is also accepted. The varyings are only used when a transform program is created.
Parameters: - shaders (list) – A list of
Shader
objects. - varyings (list) – A list of varying names.
Returns: Program
object- shaders (list) – A list of
-
Context.
simple_vertex_array
(program, buffer, *attributes, index_buffer=None, index_element_size=4) → VertexArray¶ Create a
VertexArray
object.Warning
This method is deprecated and may be removed in the future. Use
Context.vertex_array()
instead. It also supports the argument format this method describes.Parameters: Keyword Arguments: - index_element_size (int) – byte size of each index element, 1, 2 or 4.
- index_buffer (Buffer) – An index buffer.
Returns: VertexArray
object
-
Context.
vertex_array
(*args, **kwargs) → VertexArray¶ Create a
VertexArray
object.This method also supports arguments for
Context.simple_vertex_array()
.Parameters: - program (Program) – The program used when rendering.
- content (list) – A list of (buffer, format, attributes). See Buffer Format.
- index_buffer (Buffer) – An index buffer.
Keyword Arguments: - index_element_size (int) – byte size of each index element, 1, 2 or 4.
- skip_errors (bool) – Ignore skip_errors varyings.
Returns: VertexArray
object
-
Context.
buffer
(data=None, reserve=0, dynamic=False) → Buffer¶ Create a
Buffer
object.Parameters: data (bytes) – Content of the new buffer.
Keyword Arguments: - reserve (int) – The number of bytes to reserve.
- dynamic (bool) – Treat buffer as dynamic.
Returns: Buffer
object
-
Context.
texture
(size, components, data=None, samples=0, alignment=1, dtype='f1') → Texture¶ Create a
Texture
object.Parameters: - size (tuple) – The width and height of the texture.
- components (int) – The number of components 1, 2, 3 or 4.
- data (bytes) – Content of the texture.
Keyword Arguments: - samples (int) – The number of samples. Value 0 means no multisample format.
- alignment (int) – The byte alignment 1, 2, 4 or 8.
- dtype (str) – Data type.
Returns: Texture
object
-
Context.
depth_texture
(size, data=None, samples=0, alignment=4) → Texture¶ Create a
Texture
object.Parameters: - size (tuple) – The width and height of the texture.
- data (bytes) – Content of the texture.
Keyword Arguments: - samples (int) – The number of samples. Value 0 means no multisample format.
- alignment (int) – The byte alignment 1, 2, 4 or 8.
Returns: Texture
object
-
Context.
texture3d
(size, components, data=None, alignment=1, dtype='f1') → Texture3D¶ Create a
Texture3D
object.Parameters: - size (tuple) – The width, height and depth of the texture.
- components (int) – The number of components 1, 2, 3 or 4.
- data (bytes) – Content of the texture.
Keyword Arguments: - alignment (int) – The byte alignment 1, 2, 4 or 8.
- dtype (str) – Data type.
Returns: Texture3D
object
-
Context.
texture_array
(size, components, data=None, alignment=1, dtype='f1') → TextureArray¶ Create a
TextureArray
object.Parameters: - size (tuple) – The
(width, height, layers)
of the texture. - components (int) – The number of components 1, 2, 3 or 4.
- data (bytes) – Content of the texture. The size must be
(width, height * layers)
so each layer is stacked vertically.
Keyword Arguments: - alignment (int) – The byte alignment 1, 2, 4 or 8.
- dtype (str) – Data type.
Returns: Texture3D
object- size (tuple) – The
-
Context.
texture_cube
(size, components, data=None, alignment=1, dtype='f1') → TextureCube¶ Create a
TextureCube
object.Parameters: - size (tuple) – The width, height of the texture. Each side of the cube will have this size.
- components (int) – The number of components 1, 2, 3 or 4.
- data (bytes) – Content of the texture. The data should be have the following ordering: positive_x, negative_x, positive_y, negative_y, positive_z + negative_z
Keyword Arguments: - alignment (int) – The byte alignment 1, 2, 4 or 8.
- dtype (str) – Data type.
Returns: TextureCube
object
-
Context.
simple_framebuffer
(size, components=4, samples=0, dtype='f1') → Framebuffer¶ Creates a
Framebuffer
with a single color attachment and depth buffer usingmoderngl.Renderbuffer
attachments.Parameters: - size (tuple) – The width and height of the renderbuffer.
- components (int) – The number of components 1, 2, 3 or 4.
Keyword Arguments: - samples (int) – The number of samples. Value 0 means no multisample format.
- dtype (str) – Data type.
Returns: Framebuffer
object
-
Context.
framebuffer
(color_attachments=(), depth_attachment=None) → Framebuffer¶ A
Framebuffer
is a collection of buffers that can be used as the destination for rendering. The buffers for Framebuffer objects reference images from either Textures or Renderbuffers.Parameters: - color_attachments (list) – A list of
Texture
orRenderbuffer
objects. - depth_attachment (Renderbuffer or Texture) – The depth attachment.
Returns: Framebuffer
object- color_attachments (list) – A list of
-
Context.
renderbuffer
(size, components=4, samples=0, dtype='f1') → Renderbuffer¶ Renderbuffer
objects are OpenGL objects that contain images. They are created and used specifically withFramebuffer
objects.Parameters: - size (tuple) – The width and height of the renderbuffer.
- components (int) – The number of components 1, 2, 3 or 4.
Keyword Arguments: - samples (int) – The number of samples. Value 0 means no multisample format.
- dtype (str) – Data type.
Returns: Renderbuffer
object
-
Context.
depth_renderbuffer
(size, samples=0) → Renderbuffer¶ Renderbuffer
objects are OpenGL objects that contain images. They are created and used specifically withFramebuffer
objects.Parameters: size (tuple) – The width and height of the renderbuffer. Keyword Arguments: samples (int) – The number of samples. Value 0 means no multisample format. Returns: Renderbuffer
object
-
Context.
scope
(framebuffer=None, enable_only=None, textures=(), uniform_buffers=(), storage_buffers=(), samplers=(), enable=None) → Scope¶ Create a
Scope
object.Parameters: - framebuffer (Framebuffer) – The framebuffer to use when entering.
- enable_only (int) – The enable_only flags to set when entering.
Keyword Arguments: - textures (list) – List of (texture, binding) tuples.
- uniform_buffers (list) – List of (buffer, binding) tuples.
- storage_buffers (list) – List of (buffer, binding) tuples.
- samplers (list) – List of sampler bindings
- enable (int) – Flags to enable for this vao such as depth testing and blending
-
Context.
query
(samples=False, any_samples=False, time=False, primitives=False) → Query¶ Create a
Query
object.Keyword Arguments: - samples (bool) – Query
GL_SAMPLES_PASSED
or not. - any_samples (bool) – Query
GL_ANY_SAMPLES_PASSED
or not. - time (bool) – Query
GL_TIME_ELAPSED
or not. - primitives (bool) – Query
GL_PRIMITIVES_GENERATED
or not.
- samples (bool) – Query
-
Context.
compute_shader
(source) → ComputeShader¶ A
ComputeShader
is a Shader Stage that is used entirely for computing arbitrary information. While it can do rendering, it is generally used for tasks not directly related to drawing.Parameters: source (str) – The source of the compute shader. Returns: ComputeShader
object
-
Context.
sampler
(repeat_x=True, repeat_y=True, repeat_z=True, filter=None, anisotropy=1.0, compare_func='?', border_color=None, min_lod=-1000.0, max_lod=1000.0, texture=None) → Sampler¶ Create a
Sampler
object.Keyword Arguments: - repeat_x (bool) – Repeat texture on x
- repeat_y (bool) – Repeat texture on y
- repeat_z (bool) – Repeat texture on z
- filter (tuple) – The min and max filter
- anisotropy (float) – Number of samples for anisotropic filtering. Any value greater than 1.0 counts as a use of anisotropic filtering
- compare_func – Compare function for depth textures
- border_color (tuple) – The (r, g, b, a) color for the texture border.
When this value is set the
repeat_
values are overridden setting the texture wrap to return the border color when outside[0, 1]
range. - min_lod (float) – Minimum level-of-detail parameter (Default
-1000.0
). This floating-point value limits the selection of highest resolution mipmap (lowest mipmap level) - max_lod (float) – Minimum level-of-detail parameter (Default
1000.0
). This floating-point value limits the selection of the lowest resolution mipmap (highest mipmap level) - texture (Texture) – The texture for this sampler
-
Context.
clear_samplers
(start=0, end=-1)¶ Unbinds samplers from texture units. Sampler bindings do clear automatically between every frame, but lingering samplers can still be a source of weird bugs during the frame rendering. This methods provides a fairly brute force and efficient way to ensure texture units are clear.
Keyword Arguments: - start (int) – The texture unit index to start the clearing samplers
- stop (int) – The texture unit index to stop clearing samplers
Example:
# Clear texture unit 0, 1, 2, 3, 4 ctx.clear_samplers(start=0, end=5) # Clear texture unit 4, 5, 6, 7 ctx.clear_samplers(start=4, end=8)
-
Context.
release
()¶ Release the ModernGL context.
If the context is not standalone the standard backends in
glcontext
will not do anything because the context was not created by moderngl.Standalone contexts can normally be released.
Methods¶
-
Context.
clear
(red=0.0, green=0.0, blue=0.0, alpha=0.0, depth=1.0, viewport=None, color=None)¶ Clear the bound framebuffer.
If a viewport passed in, a scissor test will be used to clear the given viewport. This viewport take prescense over the framebuffers
scissor
. Clearing can still be done with scissor if no viewport is passed in.This method also respects the
color_mask
anddepth_mask
. It can for example be used to only clear the depth or color buffer or specific components in the color buffer.If the viewport is a 2-tuple it will clear the
(0, 0, width, height)
where(width, height)
is the 2-tuple.If the viewport is a 4-tuple it will clear the given viewport.
Parameters: - red (float) – color component.
- green (float) – color component.
- blue (float) – color component.
- alpha (float) – alpha component.
- depth (float) – depth value.
Keyword Arguments: viewport (tuple) – The viewport.
-
Context.
enable_only
(flags)¶ Clears all existing flags applying new ones.
Note that the enum values defined in moderngl are not the same as the ones in opengl. These are defined as bit flags so we can logical or them together.
Available flags:
moderngl.NOTHING
moderngl.BLEND
moderngl.DEPTH_TEST
moderngl.CULL_FACE
moderngl.RASTERIZER_DISCARD
moderngl.PROGRAM_POINT_SIZE
Examples:
# Disable all flags ctx.enable_only(moderngl.NOTHING) # Ensure only depth testing and face culling is enabled ctx.enable_only(moderngl.DEPTH_TEST | moderngl.CULL_FACE)
Parameters: flags (EnableFlag) – The flags to enable
-
Context.
enable
(flags)¶ Enable flags.
Note that the enum values defined in moderngl are not the same as the ones in opengl. These are defined as bit flags so we can logical or them together.
For valid flags, please see
enable_only()
.Examples:
# Enable a single flag ctx.enable(moderngl.DEPTH_TEST) # Enable multiple flags ctx.enable(moderngl.DEPTH_TEST | moderngl.CULL_FACE | moderngl.BLEND)
Parameters: flag (int) – The flags to enable.
-
Context.
disable
(flags)¶ Disable flags.
For valid flags, please see
enable_only()
.Examples:
# Only disable depth testing ctx.disable(moderngl.DEPTH_TEST) # Disable depth testing and face culling ctx.disable(moderngl.DEPTH_TEST | moderngl.CULL_FACE)
Parameters: flag (int) – The flags to disable.
-
Context.
finish
()¶ Wait for all drawing commands to finish.
-
Context.
copy_buffer
(dst, src, size=-1, read_offset=0, write_offset=0)¶ Copy buffer content.
Parameters: Keyword Arguments: - read_offset (int) – The read offset.
- write_offset (int) – The write offset.
-
Context.
copy_framebuffer
(dst, src)¶ Copy framebuffer content.
Use this method to:
- blit framebuffers.
- copy framebuffer content into a texture.
- downsample framebuffers. (it will allow to read the framebuffer’s content)
- downsample a framebuffer directly to a texture.
Parameters: - dst (Framebuffer or Texture) – Destination framebuffer or texture.
- src (Framebuffer) – Source framebuffer.
-
Context.
detect_framebuffer
(glo=None) → Framebuffer¶ Detect framebuffer.
Parameters: glo (int) – Framebuffer object. Returns: Framebuffer
object
-
Context.
__enter__
()¶ Enters the context.
This should ideally be used with the
with
statement:with other_context as ctx: # Do something in this context
When exiting the context the previously bound context is activated again.
Warning
Context switching can be risky unless you know what you are doing. ModernGL objects are not aware of what context is currently active. Use with care.
-
Context.
__exit__
(exc_type, exc_val, exc_tb)¶ Exit the context.
Attributes¶
-
Context.
line_width
¶ Set the default line width.
Type: float
-
Context.
point_size
¶ Set/get the default point size.
Type: float
-
Context.
depth_func
¶ Set the default depth func. The depth function is set using a string.
Example:
ctx.depth_func = '<=' # GL_LEQUAL ctx.depth_func = '<' # GL_LESS ctx.depth_func = '>=' # GL_GEQUAL ctx.depth_func = '>' # GL_GREATER ctx.depth_func = '==' # GL_EQUAL ctx.depth_func = '!=' # GL_NOTEQUAL ctx.depth_func = '0' # GL_NEVER ctx.depth_func = '1' # GL_ALWAYS
Type: int
-
Context.
blend_func
¶ Set the blend func (write only) Blend func can be set for rgb and alpha separately if needed.
Supported blend functions are:
moderngl.ZERO moderngl.ONE moderngl.SRC_COLOR moderngl.ONE_MINUS_SRC_COLOR moderngl.DST_COLOR moderngl.ONE_MINUS_DST_COLOR moderngl.SRC_ALPHA moderngl.ONE_MINUS_SRC_ALPHA moderngl.DST_ALPHA moderngl.ONE_MINUS_DST_ALPHA
Example:
# For both rgb and alpha ctx.blend_func = moderngl.SRC_ALPHA, moderngl.ONE_MINUS_SRC_ALPHA # Separate for rgb and alpha ctx.blend_func = ( moderngl.SRC_ALPHA, moderngl.ONE_MINUS_SRC_ALPHA, moderngl.ONE, moderngl.ONE )
Type: tuple
-
Context.
blend_equation
¶ Set the blend equation (write only).
Blend equations specify how source and destination colors are combined in blending operations. By default
FUNC_ADD
is used.Blend equation can be set for rgb and alpha separately if needed.
Supported functions are:
moderngl.FUNC_ADD # source + destination moderngl.FUNC_SUBTRACT # source - destination moderngl.FUNC_REVERSE_SUBTRACT # destination - source moderngl.MIN # Minimum of source and destination moderngl.MAX # Maximum of source and destination
Example:
# For both rgb and alpha channel ctx.blend_func = moderngl.FUNC_ADD # Separate for rgb and alpha channel ctx.blend_func = moderngl.FUNC_ADD, moderngl.MAX
Type: tuple
-
Context.
viewport
¶ Get or set the viewport of the active framebuffer.
Example:
>>> ctx.viewport (0, 0, 1280, 720) >>> ctx.viewport = (0, 0, 640, 360) >>> ctx.viewport (0, 0, 640, 360)
If no framebuffer is bound
(0, 0, 0, 0)
will be returned.Type: tuple
-
Context.
scissor
¶ Get or set the scissor box for the active framebuffer
When scissor testing is enabled fragments outside the defined scissor box will be discarded. This applies to rendered geometry or
Context.clear()
.Setting is value enables scissor testing in the framebuffer. Setting the scissor to
None
disables scissor testing and reverts the scissor box to match the framebuffer size.Example:
# Enable scissor testing >>> ctx.scissor = 100, 100, 200, 100 # Disable scissor testing >>> ctx.scissor = None
If no framebuffer is bound
(0, 0, 0, 0)
will be returned.Type: tuple
-
Context.
version_code
¶ The OpenGL version code. Reports
410
for OpenGL 4.1Type: int
-
Context.
screen
¶ A Framebuffer instance representing the screen usually set when creating a context with
create_context()
attaching to an existing context. This is the special system framebuffer represented by framebufferid=0
.When creating a standalone context this property is not set.
Type: Framebuffer
-
Context.
fbo
¶ The active framebuffer. Set every time
Framebuffer.use()
is called.Type: Framebuffer
-
Context.
front_face
¶ The front_face. Acceptable values are
'ccw'
(default) or'cw'
.Face culling must be enabled for this to have any effect:
ctx.enable(moderngl.CULL_FACE)
.Example:
# Triangles winded counter-clockwise considered front facing ctx.front_face = 'ccw' # Triangles winded clockwise considered front facing ctx.front_face = 'cw'
Type: str
-
Context.
cull_face
¶ The face side to cull. Acceptable values are
'back'
(default)'front'
or'front_and_back'
.This is similar to
Context.front_face()
Face culling must be enabled for this to have any effect:
ctx.enable(moderngl.CULL_FACE)
.Example:
# ctx.cull_face = 'front' # ctx.cull_face = 'back' # ctx.cull_face = 'front_and_back'
Type: str
-
Context.
wireframe
¶ Wireframe settings for debugging.
Type: bool
-
Context.
max_samples
¶ The maximum supported number of samples for multisampling
Type: int
-
Context.
max_integer_samples
¶ The max integer samples.
Type: int
-
Context.
max_texture_units
¶ The max texture units.
Type: int
-
Context.
default_texture_unit
¶ The default texture unit.
Type: int
-
Context.
max_anisotropy
¶ The maximum value supported for anisotropic filtering.
Type: float
-
Context.
multisample
¶ Enable/disable multisample mode (
GL_MULTISAMPLE
). This property is write only.Example:
# Enable ctx.multisample = True # Disable ctx.multisample = False
Type: bool
-
Context.
patch_vertices
¶ The number of vertices that will be used to make up a single patch primitive.
Type: int
-
Context.
provoking_vertex
¶ Specifies the vertex to be used as the source of data for flat shaded varyings.
Flatshading a vertex shader varying output (ie.
flat out vec3 pos
) means to assign all vetices of the primitive the same value for that output. The vertex from which these values is derived is known as the provoking vertex.It can be configured to be the first or the last vertex.
This property is write only.
Example:
# Use first vertex ctx.provoking_vertex = moderngl.FIRST_VERTEX_CONVENTION # Use last vertex ctx.provoking_vertex = moderngl.LAST_VERTEX_CONVENTION
Type: int
-
Context.
error
¶ The result of
glGetError()
but human readable. This values is provided for debug purposes only and is likely to reduce performace when used in a draw loop.Type: str
-
Context.
info
¶ Information about the context
Example:
{ 'GL_VENDOR': 'NVIDIA Corporation', 'GL_RENDERER': 'NVIDIA GeForce GT 650M OpenGL Engine', 'GL_VERSION': '4.1 NVIDIA-10.32.0 355.11.10.10.40.102', 'GL_POINT_SIZE_RANGE': (1.0, 2047.0), 'GL_SMOOTH_LINE_WIDTH_RANGE': (0.5, 1.0), 'GL_ALIASED_LINE_WIDTH_RANGE': (1.0, 1.0), 'GL_POINT_FADE_THRESHOLD_SIZE': 1.0, 'GL_POINT_SIZE_GRANULARITY': 0.125, 'GL_SMOOTH_LINE_WIDTH_GRANULARITY': 0.125, 'GL_MIN_PROGRAM_TEXEL_OFFSET': -8.0, 'GL_MAX_PROGRAM_TEXEL_OFFSET': 7.0, 'GL_MINOR_VERSION': 1, 'GL_MAJOR_VERSION': 4, 'GL_SAMPLE_BUFFERS': 0, 'GL_SUBPIXEL_BITS': 8, 'GL_CONTEXT_PROFILE_MASK': 1, 'GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT': 256, 'GL_DOUBLEBUFFER': False, 'GL_STEREO': False, 'GL_MAX_VIEWPORT_DIMS': (16384, 16384), 'GL_MAX_3D_TEXTURE_SIZE': 2048, 'GL_MAX_ARRAY_TEXTURE_LAYERS': 2048, 'GL_MAX_CLIP_DISTANCES': 8, 'GL_MAX_COLOR_ATTACHMENTS': 8, 'GL_MAX_COLOR_TEXTURE_SAMPLES': 8, 'GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS': 233472, 'GL_MAX_COMBINED_GEOMETRY_UNIFORM_COMPONENTS': 231424, 'GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS': 80, 'GL_MAX_COMBINED_UNIFORM_BLOCKS': 70, 'GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS': 233472, 'GL_MAX_CUBE_MAP_TEXTURE_SIZE': 16384, 'GL_MAX_DEPTH_TEXTURE_SAMPLES': 8, 'GL_MAX_DRAW_BUFFERS': 8, 'GL_MAX_DUAL_SOURCE_DRAW_BUFFERS': 1, 'GL_MAX_ELEMENTS_INDICES': 150000, 'GL_MAX_ELEMENTS_VERTICES': 1048575, 'GL_MAX_FRAGMENT_INPUT_COMPONENTS': 128, 'GL_MAX_FRAGMENT_UNIFORM_COMPONENTS': 4096, 'GL_MAX_FRAGMENT_UNIFORM_VECTORS': 1024, 'GL_MAX_FRAGMENT_UNIFORM_BLOCKS': 14, 'GL_MAX_GEOMETRY_INPUT_COMPONENTS': 128, 'GL_MAX_GEOMETRY_OUTPUT_COMPONENTS': 128, 'GL_MAX_GEOMETRY_TEXTURE_IMAGE_UNITS': 16, 'GL_MAX_GEOMETRY_UNIFORM_BLOCKS': 14, 'GL_MAX_GEOMETRY_UNIFORM_COMPONENTS': 2048, 'GL_MAX_INTEGER_SAMPLES': 1, 'GL_MAX_SAMPLES': 8, 'GL_MAX_RECTANGLE_TEXTURE_SIZE': 16384, 'GL_MAX_RENDERBUFFER_SIZE': 16384, 'GL_MAX_SAMPLE_MASK_WORDS': 1, 'GL_MAX_SERVER_WAIT_TIMEOUT': -1, 'GL_MAX_TEXTURE_BUFFER_SIZE': 134217728, 'GL_MAX_TEXTURE_IMAGE_UNITS': 16, 'GL_MAX_TEXTURE_LOD_BIAS': 15, 'GL_MAX_TEXTURE_SIZE': 16384, 'GL_MAX_UNIFORM_BUFFER_BINDINGS': 70, 'GL_MAX_UNIFORM_BLOCK_SIZE': 65536, 'GL_MAX_VARYING_COMPONENTS': 0, 'GL_MAX_VARYING_VECTORS': 31, 'GL_MAX_VARYING_FLOATS': 0, 'GL_MAX_VERTEX_ATTRIBS': 16, 'GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS': 16, 'GL_MAX_VERTEX_UNIFORM_COMPONENTS': 4096, 'GL_MAX_VERTEX_UNIFORM_VECTORS': 1024, 'GL_MAX_VERTEX_OUTPUT_COMPONENTS': 128, 'GL_MAX_VERTEX_UNIFORM_BLOCKS': 14, 'GL_MAX_VERTEX_ATTRIB_RELATIVE_OFFSET': 0, 'GL_MAX_VERTEX_ATTRIB_BINDINGS': 0, 'GL_VIEWPORT_BOUNDS_RANGE': (-32768, 32768), 'GL_VIEWPORT_SUBPIXEL_BITS': 0, 'GL_MAX_VIEWPORTS': 16 }
Type: dict
-
Context.
mglo
¶ Internal representation for debug purposes only.
-
Context.
extra
¶ Any - Attribute for storing user defined objects
Context Flags¶
Context flags are used to enable or disable states in the context.
These are not the same enum values as in opengl, but are rather
bit flags so we can or
them together setting multiple states
in a simple way.
These values are available in the Context
object and in the
moderngl
module when you don’t have access to the context.
import moderngl
# From moderngl
ctx.enable_only(moderngl.DEPTH_TEST | moderngl.CULL_FACE)
# From context
ctx.enable_only(ctx.DEPTH_TEST | ctx.CULL_FACE)
-
Context.
NOTHING
= 0¶ Represents no states. Can be used with
Context.enable_only()
to disable all states.
-
Context.
BLEND
= 1¶ Enable/disable blending
-
Context.
DEPTH_TEST
= 2¶ Enable/disable depth testing
-
Context.
CULL_FACE
= 4¶ Enable/disable face culling
-
Context.
RASTERIZER_DISCARD
= 8¶ Enable/disable rasterization
-
Context.
PROGRAM_POINT_SIZE
= 16¶ When enabled we can write to
gl_PointSize
in the vertex shader to specify the point size. When disabledContext.point_size
is used.
Blend Functions¶
Blend functions are used with Context.blend_func
to control blending operations.
# Default value
ctx.blend_func = ctx.SRC_ALPHA, ctx.ONE_MINUS_SRC_ALPHA
-
Context.
ZERO
= 0¶
-
Context.
ONE
= 1¶
-
Context.
SRC_COLOR
= 768¶
-
Context.
ONE_MINUS_SRC_COLOR
= 769¶
-
Context.
SRC_ALPHA
= 770¶
-
Context.
ONE_MINUS_SRC_ALPHA
= 771¶
-
Context.
DST_ALPHA
= 772¶
-
Context.
ONE_MINUS_DST_ALPHA
= 773¶
-
Context.
DST_COLOR
= 774¶
-
Context.
ONE_MINUS_DST_COLOR
= 775¶
Blend Function Shortcuts¶
-
Context.
DEFAULT_BLENDING
= (770, 771)¶ Shotcut for the default blending
SRC_ALPHA, ONE_MINUS_SRC_ALPHA
-
Context.
ADDITIVE_BLENDING
= (1, 1)¶ Shotcut for additive blending
ONE, ONE
-
Context.
PREMULTIPLIED_ALPHA
= (770, 1)¶ Shotcut for blend mode when using premultiplied alpha
SRC_ALPHA, ONE
Blend Equations¶
Used with Context.blend_equation
.
-
Context.
FUNC_ADD
= 32774¶ source + destination
-
Context.
FUNC_SUBTRACT
= 32778¶ source - destination
-
Context.
FUNC_REVERSE_SUBTRACT
= 32779¶ destination - source
-
Context.
MIN
= 32775¶ Minimum of source and destination
-
Context.
MAX
= 32776¶ Maximum of source and destination
Other Enums¶
-
Context.
FIRST_VERTEX_CONVENTION
= 36429¶ Specifies the first vertex should be used as the source of data for flat shaded varyings. Used with
Context.provoking_vertex
.
-
Context.
LAST_VERTEX_CONVENTION
= 36430¶ Specifies the last vertex should be used as the source of data for flat shaded varyings. Used with
Context.provoking_vertex
.
Examples¶
ModernGL Context¶
import moderngl
# create a window
ctx = moderngl.create_context()
print(ctx.version_code)
Standalone ModernGL Context¶
import moderngl
ctx = moderngl.create_standalone_context()
print(ctx.version_code)
ContextManager¶
context_manager.py
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | import moderngl
class ContextManager:
ctx = None
@staticmethod
def get_default_context(allow_fallback_standalone_context=True) -> moderngl.Context:
'''
Default context
'''
if ContextManager.ctx is None:
try:
ContextManager.ctx = moderngl.create_context()
except:
if allow_fallback_standalone_context:
ContextManager.ctx = moderngl.create_standalone_context()
else:
raise
return ContextManager.ctx
|
example.py
1 2 3 4 | from context_manager import ContextManager
ctx = ContextManager.get_default_context()
print(ctx.version_code)
|
Buffer¶
-
class
moderngl.
Buffer
¶ Buffer objects are OpenGL objects that store an array of unformatted memory allocated by the OpenGL context, (data allocated on the GPU). These can be used to store vertex data, pixel data retrieved from images or the framebuffer, and a variety of other things.
A Buffer object cannot be instantiated directly, it requires a context. Use
Context.buffer()
to create one.Copy buffer content using
Context.copy_buffer()
.
Create¶
Methods¶
-
Buffer.
assign
(index)¶ Helper method for assigning a buffer.
Returns: (self, index) tuple
-
Buffer.
bind
(*attribs, layout=None)¶ Helper method for binding a buffer.
Returns: (self, layout, *attribs) tuple
-
Buffer.
write
(data, offset=0)¶ Write the content.
Parameters: data (bytes) – The data. Keyword Arguments: offset (int) – The offset.
-
Buffer.
write_chunks
(data, start, step, count)¶ Split data to count equal parts.
Write the chunks using offsets calculated from start, step and stop.
Parameters: - data (bytes) – The data.
- start (int) – First offset.
- step (int) – Offset increment.
- count (int) – The number of offsets.
-
Buffer.
read
(size=-1, offset=0) → bytes¶ Read the content.
Parameters: size (int) – The size. Value -1
means all.Keyword Arguments: offset (int) – The offset. Returns: bytes
-
Buffer.
read_into
(buffer, size=-1, offset=0, write_offset=0)¶ Read the content into a buffer.
Parameters: - buffer (bytearray) – The buffer that will receive the content.
- size (int) – The size. Value
-1
means all.
Keyword Arguments: - offset (int) – The read offset.
- write_offset (int) – The write offset.
-
Buffer.
read_chunks
(chunk_size, start, step, count) → bytes¶ Read the content.
Read and concatenate the chunks of size chunk_size using offsets calculated from start, step and stop.
Parameters: - chunk_size (int) – The chunk size.
- start (int) – First offset.
- step (int) – Offset increment.
- count (int) – The number of offsets.
Returns: bytes
-
Buffer.
read_chunks_into
(buffer, chunk_size, start, step, count, write_offset=0)¶ Read the content.
Read and concatenate the chunks of size chunk_size using offsets calculated from start, step and stop.
Parameters: - buffer (bytearray) – The buffer that will receive the content.
- chunk_size (int) – The chunk size.
- start (int) – First offset.
- step (int) – Offset increment.
- count (int) – The number of offsets.
Keyword Arguments: write_offset (int) – The write offset.
-
Buffer.
clear
(size=-1, offset=0, chunk=None)¶ Clear the content.
Parameters: size (int) – The size. Value
-1
means all.Keyword Arguments: - offset (int) – The offset.
- chunk (bytes) – The chunk to use repeatedly.
-
Buffer.
bind_to_uniform_block
(binding=0, offset=0, size=-1)¶ Bind the buffer to a uniform block.
Parameters: binding (int) – The uniform block binding.
Keyword Arguments: - offset (int) – The offset.
- size (int) – The size. Value
-1
means all.
-
Buffer.
bind_to_storage_buffer
(binding=0, offset=0, size=-1)¶ Bind the buffer to a shader storage buffer.
Parameters: binding (int) – The shader storage binding.
Keyword Arguments: - offset (int) – The offset.
- size (int) – The size. Value
-1
means all.
-
Buffer.
orphan
(size=-1)¶ Orphan the buffer with the option to specify a new size.
It is also called buffer re-specification.
Reallocate the buffer object before you start modifying it.
Since allocating storage is likely faster than the implicit synchronization, you gain significant performance advantages over synchronization.
The old storage will still be used by the OpenGL commands that have been sent previously. It is likely that the GL driver will not be doing any allocation at all, but will just be pulling an old free block off the unused buffer queue and use it, so it is likely to be very efficient.
Keyword Arguments: size (int) – The new byte size if the buffer. If not supplied the buffer size will be unchanged. Example
# For simplicity the VertexArray creation is omitted >>> vbo = ctx.buffer(reserve=1024) # Fill the buffer >>> vbo.write(some_temporary_data) # Issue a render call that uses the vbo >>> vao.render(...) # Orphan the buffer >>> vbo.orphan() # Issue another render call without waiting for the previous one >>> vbo.write(some_temporary_data) >>> vao.render(...) # We can also resize the buffer. In this case we double the size >> vbo.orphan(vbo.size * 2)
-
Buffer.
release
()¶ Release the ModernGL object.
Attributes¶
-
Buffer.
size
¶ The size of the buffer.
Type: int
-
Buffer.
dynamic
¶ Is the buffer created with the dynamic flag?
Type: bool
-
Buffer.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
Buffer.
mglo
¶ Internal representation for debug purposes only.
-
Buffer.
extra
¶ Any - Attribute for storing user defined objects
-
Buffer.
ctx
¶ The context this object belongs to
VertexArray¶
-
class
moderngl.
VertexArray
¶ A VertexArray object is an OpenGL object that stores all of the state needed to supply vertex data. It stores the format of the vertex data as well as the Buffer objects providing the vertex data arrays.
In ModernGL, the VertexArray object also stores a reference for a
Program
object, and some Subroutine information.A VertexArray object cannot be instantiated directly, it requires a context. Use
Context.vertex_array()
orContext.simple_vertex_array()
to create one.Note
Compared to OpenGL,
VertexArray
objects have some additional responsibilities:- Binding a
Program
whenVertexArray.render()
orVertexArray.transform()
is called. - Subroutines can be assigned. Please see the example below.
- Binding a
Create¶
-
Context.
simple_vertex_array
(program, buffer, *attributes, index_buffer=None, index_element_size=4) → VertexArray Create a
VertexArray
object.Warning
This method is deprecated and may be removed in the future. Use
Context.vertex_array()
instead. It also supports the argument format this method describes.Parameters: Keyword Arguments: - index_element_size (int) – byte size of each index element, 1, 2 or 4.
- index_buffer (Buffer) – An index buffer.
Returns: VertexArray
object
-
Context.
vertex_array
(*args, **kwargs) → VertexArray Create a
VertexArray
object.This method also supports arguments for
Context.simple_vertex_array()
.Parameters: - program (Program) – The program used when rendering.
- content (list) – A list of (buffer, format, attributes). See Buffer Format.
- index_buffer (Buffer) – An index buffer.
Keyword Arguments: - index_element_size (int) – byte size of each index element, 1, 2 or 4.
- skip_errors (bool) – Ignore skip_errors varyings.
Returns: VertexArray
object
Methods¶
-
VertexArray.
render
(mode=None, vertices=-1, first=0, instances=-1)¶ The render primitive (mode) must be the same as the input primitive of the GeometryShader.
Parameters: - mode (int) – By default
TRIANGLES
will be used. - vertices (int) – The number of vertices to transform.
Keyword Arguments: - first (int) – The index of the first vertex to start with.
- instances (int) – The number of instances.
- mode (int) – By default
-
VertexArray.
render_indirect
(buffer, mode=None, count=-1, first=0)¶ The render primitive (mode) must be the same as the input primitive of the GeometryShader.
The draw commands are 5 integers: (count, instanceCount, firstIndex, baseVertex, baseInstance).
Parameters: - buffer (Buffer) – Indirect drawing commands.
- mode (int) – By default
TRIANGLES
will be used. - count (int) – The number of draws.
Keyword Arguments: first (int) – The index of the first indirect draw command.
-
VertexArray.
transform
(buffer, mode=None, vertices=-1, first=0, instances=-1, buffer_offset=0)¶ Transform vertices. Stores the output in a single buffer. The transform primitive (mode) must be the same as the input primitive of the GeometryShader.
Parameters: - buffer (Buffer) – The buffer to store the output.
- mode (int) – By default
POINTS
will be used. - vertices (int) – The number of vertices to transform.
Keyword Arguments: - first (int) – The index of the first vertex to start with.
- instances (int) – The number of instances.
- buffer_offset (int) – Byte offset for the output buffer
-
VertexArray.
bind
(attribute, cls, buffer, fmt, offset=0, stride=0, divisor=0, normalize=False)¶ Bind individual attributes to buffers.
Parameters: - location (int) – The attribute location.
- cls (str) – The attribute class. Valid values are
f
,i
ord
. - buffer (Buffer) – The buffer.
- format (str) – The buffer format.
Keyword Arguments: - offset (int) – The offset.
- stride (int) – The stride.
- divisor (int) – The divisor.
- normalize (bool) – The normalize parameter, if applicable.
-
VertexArray.
release
()¶ Release the ModernGL object.
Attributes¶
-
VertexArray.
program
¶ The program assigned to the VertexArray. The program used when rendering or transforming primitives.
Type: Program
-
VertexArray.
index_element_size
¶ The byte size of each element in the index buffer
Type: int
-
VertexArray.
scope
¶ The
moderngl.Scope
.
-
VertexArray.
vertices
¶ The number of vertices detected. This is the minimum of the number of vertices possible per Buffer. The size of the index_buffer determines the number of vertices. Per instance vertex attributes does not affect this number.
Type: int
-
VertexArray.
instances
¶ Get or set the number of instances to render
Type: int
-
VertexArray.
subroutines
¶ The subroutines assigned to the VertexArray. The subroutines used when rendering or transforming primitives.
Type: tuple
-
VertexArray.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
VertexArray.
mglo
¶ Internal representation for debug purposes only.
-
VertexArray.
extra
¶ Any - Attribute for storing user defined objects
-
VertexArray.
ctx
¶ The context this object belongs to
Program¶
-
class
moderngl.
Program
¶ A Program object represents fully processed executable code in the OpenGL Shading Language, for one or more Shader stages.
In ModernGL, a Program object can be assigned to
VertexArray
objects. The VertexArray object is capable of binding the Program object once theVertexArray.render()
orVertexArray.transform()
is called.Program objects has no method called
use()
, VertexArrays encapsulate this mechanism.A Program object cannot be instantiated directly, it requires a context. Use
Context.program()
to create one.Uniform buffers can be bound using
Buffer.bind_to_uniform_block()
or can be set individually. For more complex binding yielding higher performance consider usingmoderngl.Scope
.
Create¶
-
Context.
program
(vertex_shader, fragment_shader=None, geometry_shader=None, tess_control_shader=None, tess_evaluation_shader=None, varyings=()) → Program Create a
Program
object.Only linked programs will be returned.
A single shader in the shaders parameter is also accepted. The varyings are only used when a transform program is created.
Parameters: - shaders (list) – A list of
Shader
objects. - varyings (list) – A list of varying names.
Returns: Program
object- shaders (list) – A list of
Methods¶
-
Program.
get
(key, default) → Union[Uniform, UniformBlock, Subroutine, Attribute, Varying]¶ Returns a Uniform, UniformBlock, Subroutine, Attribute or Varying.
Parameters: default – This is the value to be returned in case key does not exist. Returns: Uniform
,UniformBlock
,Subroutine
,Attribute
orVarying
-
Program.
__getitem__
(key) → Union[Uniform, UniformBlock, Subroutine, Attribute, Varying]¶ Get a member such as uniforms, uniform blocks, subroutines, attributes and varyings by name.
# Get a uniform uniform = program['color'] # Uniform values can be set on the returned object # or the `__setitem__` shortcut can be used. program['color'].value = 1.0, 1.0, 1.0, 1.0 # Still when writing byte data we need to use the `write()` method program['color'].write(buffer)
-
Program.
__setitem__
(key, value)¶ Set a value of uniform or uniform block
# Set a vec4 uniform uniform['color'] = 1.0, 1.0, 1.0, 1.0 # Optionally we can store references to a member and set the value directly uniform = program['color'] uniform.value = 1.0, 0.0, 0.0, 0.0 uniform = program['cameraMatrix'] uniform.write(camera_matrix)
-
Program.
__iter__
() → Generator[str, NoneType, NoneType]¶ Yields the internal members names as strings. This includes all members such as uniforms, attributes etc.
Example:
# Print member information for name in program: member = program[name] print(name, type(member), member)
Output:
vert <class 'moderngl.program_members.attribute.Attribute'> <Attribute: 0> vert_color <class 'moderngl.program_members.attribute.Attribute'> <Attribute: 1> gl_InstanceID <class 'moderngl.program_members.attribute.Attribute'> <Attribute: -1> rotation <class 'moderngl.program_members.uniform.Uniform'> <Uniform: 0> scale <class 'moderngl.program_members.uniform.Uniform'> <Uniform: 1>
We can filter on member type if needed:
for name in prog: member = prog[name] if isinstance(member, moderngl.Uniform): print("Uniform", name, member)
or a less verbose version using dict comprehensions:
uniforms = {name: self.prog[name] for name in self.prog if isinstance(self.prog[name], moderngl.Uniform)} print(uniforms)
Output:
{'rotation': <Uniform: 0>, 'scale': <Uniform: 1>}
-
Program.
__eq__
(other) → bool¶ Compares two programs opengl names (mglo).
Returns: If the programs have the same opengl name Return type: bool Example:
# True if the internal opengl name is the same program_1 == program_2
-
Program.
release
()¶ Release the ModernGL object.
Attributes¶
-
Program.
geometry_input
¶ The geometry input primitive. The GeometryShader’s input primitive if the GeometryShader exists. The geometry input primitive will be used for validation.
Type: int
-
Program.
geometry_output
¶ The geometry output primitive. The GeometryShader’s output primitive if the GeometryShader exists.
Type: int
-
Program.
geometry_vertices
¶ The maximum number of vertices that the geometry shader will output.
Type: int
-
Program.
subroutines
¶ The subroutine uniforms.
Type: tuple
-
Program.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
Program.
mglo
¶ Internal representation for debug purposes only.
-
Program.
extra
¶ Any - Attribute for storing user defined objects
-
Program.
ctx
¶ The context this object belongs to
Examples¶
A simple program designed for rendering
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | my_render_program = ctx.program(
vertex_shader='''
#version 330
in vec2 vert;
void main() {
gl_Position = vec4(vert, 0.0, 1.0);
}
''',
fragment_shader='''
#version 330
out vec4 color;
void main() {
color = vec4(0.3, 0.5, 1.0, 1.0);
}
''',
)
|
A simple program designed for transforming
1 2 3 4 5 6 7 8 9 10 11 12 13 | my_transform_program = ctx.program(
vertex_shader='''
#version 330
in vec4 vert;
out float vert_length;
void main() {
vert_length = length(vert);
}
''',
varyings=['vert_length']
)
|
Program Members¶
Uniform¶
-
class
moderngl.
Uniform
¶ A uniform is a global GLSL variable declared with the “uniform” storage qualifier. These act as parameters that the user of a shader program can pass to that program.
In ModernGL, Uniforms can be accessed using
Program.__getitem__()
orProgram.__iter__()
Methods¶
-
Uniform.
read
() → bytes¶ Read the value of the uniform.
-
Uniform.
write
(data)¶ Write the value of the uniform.
Attributes¶
-
Uniform.
location
¶ The location of the uniform. The location holds the value returned by the glGetUniformLocation. To set the value of the uniform use the
value
instead.Type: int
-
Uniform.
dimension
¶ The dimension of the uniform.
GLSL type dimension sampler2D 1 sampler2DCube 1 sampler2DShadow 1 bool 1 bvec2 2 bvec3 3 bvec4 4 int 1 ivec2 2 ivec3 3 ivec4 4 uint 1 uvec2 2 uvec3 3 uvec4 4 float 1 vec2 2 vec3 3 vec4 4 double 1 dvec2 2 dvec3 3 dvec4 4 mat2 4 mat2x3 6 mat2x4 8 mat3x2 6 mat3 9 mat3x4 12 mat4x2 8 mat4x3 12 mat4 16 dmat2 4 dmat2x3 6 dmat2x4 8 dmat3x2 6 dmat3 9 dmat3x4 12 dmat4x2 8 dmat4x3 12 dmat4 16 Type: int
-
Uniform.
array_length
¶ The length of the array of the uniform. The array_length is 1 for non array uniforms.
Type: int
-
Uniform.
name
¶ The name of the uniform. The name does not contain leading [0]. The name may contain [ ] when the uniform is part of a struct.
Type: str
-
Uniform.
value
¶ The value of the uniform. Reading the value of the uniform may force the GPU to sync.
The value must be a tuple for non array uniforms. The value must be a list of tuples for array uniforms.
-
Uniform.
extra
¶ Any - Attribute for storing user defined objects
-
Uniform.
mglo
¶ Internal representation for debug purposes only.
UniformBlock¶
-
class
moderngl.
UniformBlock
¶
-
UniformBlock.
binding
¶ The binding of the uniform block.
Type: int
-
UniformBlock.
value
¶ The value of the uniform block.
Type: int
-
UniformBlock.
name
¶ The name of the uniform block.
Type: str
-
UniformBlock.
index
¶ The index of the uniform block.
Type: int
-
UniformBlock.
size
¶ The size of the uniform block.
Type: int
-
UniformBlock.
extra
¶ Any - Attribute for storing user defined objects
-
UniformBlock.
mglo
¶ Internal representation for debug purposes only.
Subroutine¶
-
class
moderngl.
Subroutine
¶ This class represents a program subroutine.
-
Subroutine.
index
¶ The index of the subroutine.
Type: int
-
Subroutine.
name
¶ The name of the subroutine.
Type: str
-
Subroutine.
extra
¶ Any - Attribute for storing user defined objects
Attribute¶
-
class
moderngl.
Attribute
¶ This class represents a program attribute.
-
Attribute.
location
¶ The location of the attribute. The result of the glGetAttribLocation.
Type: int
-
Attribute.
array_length
¶ If the attribute is an array the array_length is the length of the array otherwise 1.
Type: int
-
Attribute.
dimension
¶ The attribute dimension.
GLSL type dimension int 1 ivec2 2 ivec3 3 ivec4 4 uint 1 uvec2 2 uvec3 3 uvec4 4 float 1 vec2 2 vec3 3 vec4 4 double 1 dvec2 2 dvec3 3 dvec4 4 mat2 4 mat2x3 6 mat2x4 8 mat3x2 6 mat3 9 mat3x4 12 mat4x2 8 mat4x3 12 mat4 16 dmat2 4 dmat2x3 6 dmat2x4 8 dmat3x2 6 dmat3 9 dmat3x4 12 dmat4x2 8 dmat4x3 12 dmat4 16 Type: int
-
Attribute.
shape
¶ The shape is a single character, representing the scalar type of the attribute.
shape GLSL types 'i'
int ivec2 ivec3 ivec4 'I'
uint uvec2 uvec3 uvec4 'f'
float vec2 vec3 vec4 mat2 mat3 mat4 mat2x3 mat2x4 mat3x4 mat4x2 mat4x2 mat4x3 'd'
double dvec2 dvec3 dvec4 dmat2 dmat3 dmat4 dmat2x3 dmat2x4 dmat3x4 dmat4x2 dmat4x2 dmat4x3 Type: str
-
Attribute.
name
¶ The attribute name. The name will be filtered to have no array syntax on it’s end. Attribute name without
'[0]'
ending if any.Type: str
-
Attribute.
extra
¶ Any - Attribute for storing user defined objects
Sampler¶
-
class
moderngl.
Sampler
¶ A Sampler Object is an OpenGL Object that stores the sampling parameters for a Texture access inside of a shader. When a sampler object is bound to a texture image unit, the internal sampling parameters for a texture bound to the same image unit are all ignored. Instead, the sampling parameters are taken from this sampler object.
Unlike textures, a samplers state can also be changed freely be at any time without the sampler object being bound/in use.
Samplers are bound to a texture unit and not a texture itself. Be careful with leaving samplers bound to texture units as it can cause texture incompleteness issues (the texture bind is ignored).
Sampler bindings do clear automatically between every frame so a texture unit need at least one bind/use per frame.
Create¶
-
Context.
sampler
(repeat_x=True, repeat_y=True, repeat_z=True, filter=None, anisotropy=1.0, compare_func='?', border_color=None, min_lod=-1000.0, max_lod=1000.0, texture=None) → Sampler¶ Create a
Sampler
object.Keyword Arguments: - repeat_x (bool) – Repeat texture on x
- repeat_y (bool) – Repeat texture on y
- repeat_z (bool) – Repeat texture on z
- filter (tuple) – The min and max filter
- anisotropy (float) – Number of samples for anisotropic filtering. Any value greater than 1.0 counts as a use of anisotropic filtering
- compare_func – Compare function for depth textures
- border_color (tuple) – The (r, g, b, a) color for the texture border.
When this value is set the
repeat_
values are overridden setting the texture wrap to return the border color when outside[0, 1]
range. - min_lod (float) – Minimum level-of-detail parameter (Default
-1000.0
). This floating-point value limits the selection of highest resolution mipmap (lowest mipmap level) - max_lod (float) – Minimum level-of-detail parameter (Default
1000.0
). This floating-point value limits the selection of the lowest resolution mipmap (highest mipmap level) - texture (Texture) – The texture for this sampler
Methods¶
-
Sampler.
use
(location=0)¶ Bind the sampler to a texture unit
Parameters: location (int) – The texture unit
-
Sampler.
clear
(location=0)¶ Clear the sampler binding on a texture unit
Parameters: location (int) – The texture unit
-
Sampler.
assign
(index)¶ Helper method for assigning samplers to scopes.
Example:
s1 = ctx.sampler(...) s2 = ctx.sampler(...) ctx.scope(samplers=(s1.assign(0), s1.assign(1)), ...)
Returns: (self, index) tuple
-
Sampler.
release
()¶ Release/destroy the ModernGL object.
Attributes¶
-
Sampler.
texture
¶
-
Sampler.
repeat_x
¶ The x repeat flag for the sampler (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) sampler.repeat_x = True # Disable texture repeat (GL_CLAMP_TO_EDGE) sampler.repeat_x = False
Type: bool
-
Sampler.
repeat_y
¶ The y repeat flag for the sampler (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) sampler.repeat_y = True # Disable texture repeat (GL_CLAMP_TO_EDGE) sampler.repeat_y = False
Type: bool
-
Sampler.
repeat_z
¶ The z repeat flag for the sampler (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) sampler.repeat_z = True # Disable texture repeat (GL_CLAMP_TO_EDGE) sampler.repeat_z = False
Type: bool
-
Sampler.
filter
¶ The minification and magnification filter for the sampler. (Default
(moderngl.LINEAR. moderngl.LINEAR)
)Example:
sampler.filter == (moderngl.NEAREST, moderngl.NEAREST) sampler.filter == (moderngl.LINEAR_MIPMAP_LINEAR, moderngl.LINEAR) sampler.filter == (moderngl.NEAREST_MIPMAP_LINEAR, moderngl.NEAREST) sampler.filter == (moderngl.LINEAR_MIPMAP_NEAREST, moderngl.NEAREST)
Type: tuple
-
Sampler.
compare_func
¶ The compare function for a depth textures (Default
'?'
)By default samplers don’t have depth comparison mode enabled. This means that depth texture values can be read as a
sampler2D
usingtexture()
in a GLSL shader by default.When setting this property to a valid compare mode,
GL_TEXTURE_COMPARE_MODE
is set toGL_COMPARE_REF_TO_TEXTURE
so that texture lookup functions in GLSL will return a depth comparison result instead of the actual depth value.Accepted compare functions:
.compare_func = '' # Disale depth comparison completely sampler.compare_func = '<=' # GL_LEQUAL sampler.compare_func = '<' # GL_LESS sampler.compare_func = '>=' # GL_GEQUAL sampler.compare_func = '>' # GL_GREATER sampler.compare_func = '==' # GL_EQUAL sampler.compare_func = '!=' # GL_NOTEQUAL sampler.compare_func = '0' # GL_NEVER sampler.compare_func = '1' # GL_ALWAYS
Type: tuple
-
Sampler.
anisotropy
¶ Number of samples for anisotropic filtering (Default
1.0
). The value will be clamped in range1.0
andctx.max_anisotropy
.Any value greater than 1.0 counts as a use of anisotropic filtering:
# Disable anisotropic filtering sampler.anisotropy = 1.0 # Enable anisotropic filtering suggesting 16 samples as a maximum sampler.anisotropy = 16.0
Type: float
-
Sampler.
border_color
¶ When setting this value the
repeat_
values are overridden setting the texture wrap to return the border color when outside [0, 1] range.Example:
# Red border color sampler.border_color = (1.0, 0.0, 0.0, 0.0)
-
Sampler.
min_lod
¶ Minimum level-of-detail parameter (Default
-1000.0
). This floating-point value limits the selection of highest resolution mipmap (lowest mipmap level)Type: float
-
Sampler.
max_lod
¶ Minimum level-of-detail parameter (Default
1000.0
). This floating-point value limits the selection of the lowest resolution mipmap (highest mipmap level)Type: float
-
Sampler.
extra
¶ Any - Attribute for storing user defined objects
-
Sampler.
mglo
¶ Internal representation for debug purposes only.
-
Sampler.
ctx
¶ The context this object belongs to
Texture¶
-
class
moderngl.
Texture
¶ A Texture is an OpenGL object that contains one or more images that all have the same image format. A texture can be used in two ways. It can be the source of a texture access from a Shader, or it can be used as a render target.
A Texture object cannot be instantiated directly, it requires a context. Use
Context.texture()
orContext.depth_texture()
to create one.
Create¶
-
Context.
texture
(size, components, data=None, samples=0, alignment=1, dtype='f1') → Texture Create a
Texture
object.Parameters: - size (tuple) – The width and height of the texture.
- components (int) – The number of components 1, 2, 3 or 4.
- data (bytes) – Content of the texture.
Keyword Arguments: - samples (int) – The number of samples. Value 0 means no multisample format.
- alignment (int) – The byte alignment 1, 2, 4 or 8.
- dtype (str) – Data type.
Returns: Texture
object
-
Context.
depth_texture
(size, data=None, samples=0, alignment=4) → Texture Create a
Texture
object.Parameters: - size (tuple) – The width and height of the texture.
- data (bytes) – Content of the texture.
Keyword Arguments: - samples (int) – The number of samples. Value 0 means no multisample format.
- alignment (int) – The byte alignment 1, 2, 4 or 8.
Returns: Texture
object
Methods¶
-
Texture.
read
(level=0, alignment=1) → bytes¶ Read the content of the texture into a buffer.
Keyword Arguments: - level (int) – The mipmap level.
- alignment (int) – The byte alignment of the pixels.
Returns: bytes
-
Texture.
read_into
(buffer, level=0, alignment=1, write_offset=0)¶ Read the content of the texture into a buffer.
Parameters: buffer (bytearray) – The buffer that will receive the pixels.
Keyword Arguments: - level (int) – The mipmap level.
- alignment (int) – The byte alignment of the pixels.
- write_offset (int) – The write offset.
-
Texture.
write
(data, viewport=None, level=0, alignment=1)¶ Update the content of the texture from byte data or a moderngl
Buffer`
.Parameters: - data (Union[bytes, Buffer]) – The pixel data.
- viewport (tuple) – The viewport.
Keyword Arguments: - level (int) – The mipmap level.
- alignment (int) – The byte alignment of the pixels.
-
Texture.
build_mipmaps
(base=0, max_level=1000)¶ Generate mipmaps.
This also changes the texture filter to
LINEAR_MIPMAP_LINEAR, LINEAR
(Will be removed in6.x
)Keyword Arguments: - base (int) – The base level
- max_level (int) – The maximum levels to generate
-
Texture.
bind_to_image
(unit: int, read: bool = True, write: bool = True, level: int = 0, format: int = 0)¶ Bind a texture to an image unit (OpenGL 4.2 required)
This is used to bind textures to image units for shaders. The idea with image load/store is that the user can bind one of the images in a Texture to a number of image binding points (which are separate from texture image units). Shaders can read information from these images and write information to them, in ways that they cannot with textures.
It’s important to specify the right access type for the image. This can be set with the
read
andwrite
arguments. Allowed combinations are:- Read-only:
read=True
andwrite=False
- Write-only:
read=False
andwrite=True
- Read-write:
read=True
andwrite=True
format
specifies the format that is to be used when performing formatted stores into the image from shaders.format
must be compatible with the texture’s internal format. By default the format of the texture is passed in. The format parameter is only needed when overriding this behavior.More information:
- https://www.khronos.org/opengl/wiki/Image_Load_Store
- https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glBindImageTexture.xhtml
Parameters: - unit (int) – Specifies the index of the image unit to which to bind the texture
- texture (
moderngl.Texture
) – The texture to bind
Keyword Arguments: - read (bool) – Allows the shader to read the image (default:
True
) - write (bool) – Allows the shader to write to the image (default:
True
) - level (int) – Level of the texture to bind (default:
0
). - format (int) – (optional) The OpenGL enum value representing the format (defaults to the texture’s format)
- Read-only:
-
Texture.
use
(location=0)¶ Bind the texture to a texture unit.
The location is the texture unit we want to bind the texture. This should correspond with the value of the
sampler2D
uniform in the shader because samplers read from the texture unit we assign to them:# Define what texture unit our two sampler2D uniforms should represent program['texture_a'] = 0 program['texture_b'] = 1 # Bind textures to the texture units first_texture.use(location=0) second_texture.use(location=1)
Parameters: location (int) – The texture location/unit.
-
Texture.
release
()¶ Release the ModernGL object.
Attributes¶
-
Texture.
repeat_x
¶ The x repeat flag for the texture (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) texture.repeat_x = True # Disable texture repeat (GL_CLAMP_TO_EDGE) texture.repeat_x = False
Type: bool
-
Texture.
repeat_y
¶ The y repeat flag for the texture (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) texture.repeat_y = True # Disable texture repeat (GL_CLAMP_TO_EDGE) texture.repeat_y = False
Type: bool
-
Texture.
filter
¶ The minification and magnification filter for the texture. (Default
(moderngl.LINEAR. moderngl.LINEAR)
)Example:
texture.filter == (moderngl.NEAREST, moderngl.NEAREST) texture.filter == (moderngl.LINEAR_MIPMAP_LINEAR, moderngl.LINEAR) texture.filter == (moderngl.NEAREST_MIPMAP_LINEAR, moderngl.NEAREST) texture.filter == (moderngl.LINEAR_MIPMAP_NEAREST, moderngl.NEAREST)
Type: tuple
-
Texture.
swizzle
¶ The swizzle mask of the texture (Default
'RGBA'
).The swizzle mask change/reorder the
vec4
value returned by thetexture()
function in a GLSL shaders. This is represented by a 4 character string were each character can be:'R' GL_RED 'G' GL_GREEN 'B' GL_BLUE 'A' GL_ALPHA '0' GL_ZERO '1' GL_ONE
Example:
# Alpha channel will always return 1.0 texture.swizzle = 'RGB1' # Only return the red component. The rest is masked to 0.0 texture.swizzle = 'R000' # Reverse the components texture.swizzle = 'ABGR'
Type: str
-
Texture.
compare_func
¶ The compare function of the depth texture (Default
'<='
)By default depth textures have
GL_TEXTURE_COMPARE_MODE
set toGL_COMPARE_REF_TO_TEXTURE
, meaning any texture lookup will return a depth comparison value.If you need to read the actual depth value in shaders, setting
compare_func
to a blank string will setGL_TEXTURE_COMPARE_MODE
toGL_NONE
making you able to read the depth texture as asampler2D
:uniform sampler2D depth; out vec4 fragColor; in vec2 uv; void main() { float raw_depth_nonlinear = texture(depth, uv); fragColor = vec4(raw_depth_nonlinear); }
Accepted compare functions:
texture.compare_func = '' # Disale depth comparison completely texture.compare_func = '<=' # GL_LEQUAL texture.compare_func = '<' # GL_LESS texture.compare_func = '>=' # GL_GEQUAL texture.compare_func = '>' # GL_GREATER texture.compare_func = '==' # GL_EQUAL texture.compare_func = '!=' # GL_NOTEQUAL texture.compare_func = '0' # GL_NEVER texture.compare_func = '1' # GL_ALWAYS
Type: tuple
-
Texture.
anisotropy
¶ Number of samples for anisotropic filtering (Default
1.0
). The value will be clamped in range1.0
andctx.max_anisotropy
.Any value greater than 1.0 counts as a use of anisotropic filtering:
# Disable anisotropic filtering texture.anisotropy = 1.0 # Enable anisotropic filtering suggesting 16 samples as a maximum texture.anisotropy = 16.0
Type: float
-
Texture.
width
¶ The width of the texture.
Type: int
-
Texture.
height
¶ The height of the texture.
Type: int
-
Texture.
size
¶ The size of the texture.
Type: tuple
-
Texture.
dtype
¶ Data type.
Type: str
-
Texture.
components
¶ The number of components of the texture.
Type: int
-
Texture.
samples
¶ The number of samples set for the texture used in multisampling.
Type: int
-
Texture.
depth
¶ Is the texture a depth texture?
Type: bool
-
Texture.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
Texture.
mglo
¶ Internal representation for debug purposes only.
-
Texture.
extra
¶ Any - Attribute for storing user defined objects
-
Texture.
ctx
¶ The context this object belongs to
TextureArray¶
-
class
moderngl.
TextureArray
¶ An Array Texture is a Texture where each mipmap level contains an array of images of the same size. Array textures may have Mipmaps, but each mipmap in the texture has the same number of levels.
A TextureArray object cannot be instantiated directly, it requires a context. Use
Context.texture_array()
to create one.
Create¶
-
Context.
texture_array
(size, components, data=None, alignment=1, dtype='f1') → TextureArray Create a
TextureArray
object.Parameters: - size (tuple) – The
(width, height, layers)
of the texture. - components (int) – The number of components 1, 2, 3 or 4.
- data (bytes) – Content of the texture. The size must be
(width, height * layers)
so each layer is stacked vertically.
Keyword Arguments: - alignment (int) – The byte alignment 1, 2, 4 or 8.
- dtype (str) – Data type.
Returns: Texture3D
object- size (tuple) – The
Methods¶
-
TextureArray.
read
(alignment=1) → bytes¶ Read the content of the texture array into a buffer.
Keyword Arguments: alignment (int) – The byte alignment of the pixels. Returns: bytes
-
TextureArray.
read_into
(buffer, alignment=1, write_offset=0)¶ Read the content of the texture array into a buffer.
Parameters: buffer (bytearray) – The buffer that will receive the pixels.
Keyword Arguments: - alignment (int) – The byte alignment of the pixels.
- write_offset (int) – The write offset.
-
TextureArray.
write
(data, viewport=None, alignment=1)¶ Update the content of the texture array.
Parameters: - data (bytes) – The pixel data.
- viewport (tuple) – The viewport.
Keyword Arguments: alignment (int) – The byte alignment of the pixels.
-
TextureArray.
build_mipmaps
(base=0, max_level=1000)¶ Generate mipmaps.
This also changes the texture filter to
LINEAR_MIPMAP_LINEAR, LINEAR
(Will be removed in6.x
)Keyword Arguments: - base (int) – The base level
- max_level (int) – The maximum levels to generate
-
TextureArray.
use
(location=0)¶ Bind the texture to a texture unit.
The location is the texture unit we want to bind the texture. This should correspond with the value of the
sampler2DArray
uniform in the shader because samplers read from the texture unit we assign to them:# Define what texture unit our two sampler2DArray uniforms should represent program['texture_a'] = 0 program['texture_b'] = 1 # Bind textures to the texture units first_texture.use(location=0) second_texture.use(location=1)
Parameters: location (int) – The texture location/unit.
-
TextureArray.
release
()¶ Release the ModernGL object.
Attributes¶
-
TextureArray.
repeat_x
¶ The x repeat flag for the texture (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) texture.repeat_x = True # Disable texture repeat (GL_CLAMP_TO_EDGE) texture.repeat_x = False
Type: bool
-
TextureArray.
repeat_y
¶ The y repeat flag for the texture (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) texture.repeat_y = True # Disable texture repeat (GL_CLAMP_TO_EDGE) texture.repeat_y = False
Type: bool
-
TextureArray.
filter
¶ The minification and magnification filter for the texture. (Default
(moderngl.LINEAR. moderngl.LINEAR)
)Example:
texture.filter == (moderngl.NEAREST, moderngl.NEAREST) texture.filter == (moderngl.LINEAR_MIPMAP_LINEAR, moderngl.LINEAR) texture.filter == (moderngl.NEAREST_MIPMAP_LINEAR, moderngl.NEAREST) texture.filter == (moderngl.LINEAR_MIPMAP_NEAREST, moderngl.NEAREST)
Type: tuple
-
TextureArray.
swizzle
¶ The swizzle mask of the texture (Default
'RGBA'
).The swizzle mask change/reorder the
vec4
value returned by thetexture()
function in a GLSL shaders. This is represented by a 4 character string were each character can be:'R' GL_RED 'G' GL_GREEN 'B' GL_BLUE 'A' GL_ALPHA '0' GL_ZERO '1' GL_ONE
Example:
# Alpha channel will always return 1.0 texture.swizzle = 'RGB1' # Only return the red component. The rest is masked to 0.0 texture.swizzle = 'R000' # Reverse the components texture.swizzle = 'ABGR'
Type: str
-
TextureArray.
anisotropy
¶ Number of samples for anisotropic filtering (Default
1.0
). The value will be clamped in range1.0
andctx.max_anisotropy
.Any value greater than 1.0 counts as a use of anisotropic filtering:
# Disable anisotropic filtering texture.anisotropy = 1.0 # Enable anisotropic filtering suggesting 16 samples as a maximum texture.anisotropy = 16.0
Type: float
-
TextureArray.
width
¶ The width of the texture array.
Type: int
-
TextureArray.
height
¶ The height of the texture array.
Type: int
-
TextureArray.
layers
¶ The number of layers of the texture array.
Type: int
-
TextureArray.
size
¶ The size of the texture array.
Type: tuple
-
TextureArray.
dtype
¶ Data type.
Type: str
-
TextureArray.
components
¶ The number of components of the texture array.
Type: int
-
TextureArray.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
TextureArray.
mglo
¶ Internal representation for debug purposes only.
-
TextureArray.
extra
¶ Any - Attribute for storing user defined objects
-
TextureArray.
ctx
¶ The context this object belongs to
Texture3D¶
-
class
moderngl.
Texture3D
¶ A Texture is an OpenGL object that contains one or more images that all have the same image format. A texture can be used in two ways. It can be the source of a texture access from a Shader, or it can be used as a render target.
A Texture3D object cannot be instantiated directly, it requires a context. Use
Context.texture3d()
to create one.
Create¶
-
Context.
texture3d
(size, components, data=None, alignment=1, dtype='f1') → Texture3D Create a
Texture3D
object.Parameters: - size (tuple) – The width, height and depth of the texture.
- components (int) – The number of components 1, 2, 3 or 4.
- data (bytes) – Content of the texture.
Keyword Arguments: - alignment (int) – The byte alignment 1, 2, 4 or 8.
- dtype (str) – Data type.
Returns: Texture3D
object
Methods¶
-
Texture3D.
read
(alignment=1) → bytes¶ Read the content of the texture into a buffer.
Keyword Arguments: alignment (int) – The byte alignment of the pixels. Returns: bytes
-
Texture3D.
read_into
(buffer, alignment=1, write_offset=0)¶ Read the content of the texture into a buffer.
Parameters: buffer (bytearray) – The buffer that will receive the pixels.
Keyword Arguments: - alignment (int) – The byte alignment of the pixels.
- write_offset (int) – The write offset.
-
Texture3D.
write
(data, viewport=None, alignment=1)¶ Update the content of the texture.
Parameters: - data (bytes) – The pixel data.
- viewport (tuple) – The viewport.
Keyword Arguments: alignment (int) – The byte alignment of the pixels.
-
Texture3D.
build_mipmaps
(base=0, max_level=1000)¶ Generate mipmaps.
This also changes the texture filter to
LINEAR_MIPMAP_LINEAR, LINEAR
(Will be removed in6.x
)Keyword Arguments: - base (int) – The base level
- max_level (int) – The maximum levels to generate
-
Texture3D.
use
(location=0)¶ Bind the texture to a texture unit.
The location is the texture unit we want to bind the texture. This should correspond with the value of the
sampler3D
uniform in the shader because samplers read from the texture unit we assign to them:# Define what texture unit our two sampler3D uniforms should represent program['texture_a'] = 0 program['texture_b'] = 1 # Bind textures to the texture units first_texture.use(location=0) second_texture.use(location=1)
Parameters: location (int) – The texture location/unit.
-
Texture3D.
release
()¶ Release the ModernGL object.
Attributes¶
-
Texture3D.
repeat_x
¶ The x repeat flag for the texture (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) texture.repeat_x = True # Disable texture repeat (GL_CLAMP_TO_EDGE) texture.repeat_x = False
Type: bool
-
Texture3D.
repeat_y
¶ The y repeat flag for the texture (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) texture.repeat_y = True # Disable texture repeat (GL_CLAMP_TO_EDGE) texture.repeat_y = False
Type: bool
-
Texture3D.
repeat_z
¶ The z repeat flag for the texture (Default
True
)Example:
# Enable texture repeat (GL_REPEAT) texture.repeat_z = True # Disable texture repeat (GL_CLAMP_TO_EDGE) texture.repeat_z = False
Type: bool
-
Texture3D.
filter
¶ The filter of the texture.
Type: tuple
-
Texture3D.
swizzle
¶ The swizzle mask of the texture (Default
'RGBA'
).The swizzle mask change/reorder the
vec4
value returned by thetexture()
function in a GLSL shaders. This is represented by a 4 character string were each character can be:'R' GL_RED 'G' GL_GREEN 'B' GL_BLUE 'A' GL_ALPHA '0' GL_ZERO '1' GL_ONE
Example:
# Alpha channel will always return 1.0 texture.swizzle = 'RGB1' # Only return the red component. The rest is masked to 0.0 texture.swizzle = 'R000' # Reverse the components texture.swizzle = 'ABGR'
Type: str
-
Texture3D.
width
¶ The width of the texture.
Type: int
-
Texture3D.
height
¶ The height of the texture.
Type: int
-
Texture3D.
depth
¶ The depth of the texture.
Type: int
-
Texture3D.
size
¶ The size of the texture.
Type: tuple
-
Texture3D.
dtype
¶ Data type.
Type: str
-
Texture3D.
components
¶ The number of components of the texture.
Type: int
-
Texture3D.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
Texture3D.
mglo
¶ Internal representation for debug purposes only.
-
Texture3D.
extra
¶ Any - Attribute for storing user defined objects
-
Texture3D.
ctx
¶ The context this object belongs to
TextureCube¶
-
class
moderngl.
TextureCube
¶ A Texture is an OpenGL object that contains one or more images that all have the same image format. A texture can be used in two ways. It can be the source of a texture access from a Shader, or it can be used as a render target.
Note
ModernGL enables
GL_TEXTURE_CUBE_MAP_SEAMLESS
globally to ensure filtering will be done across the cube faces.A Texture3D object cannot be instantiated directly, it requires a context. Use
Context.texture_cube()
to create one.
Create¶
-
Context.
texture_cube
(size, components, data=None, alignment=1, dtype='f1') → TextureCube Create a
TextureCube
object.Parameters: - size (tuple) – The width, height of the texture. Each side of the cube will have this size.
- components (int) – The number of components 1, 2, 3 or 4.
- data (bytes) – Content of the texture. The data should be have the following ordering: positive_x, negative_x, positive_y, negative_y, positive_z + negative_z
Keyword Arguments: - alignment (int) – The byte alignment 1, 2, 4 or 8.
- dtype (str) – Data type.
Returns: TextureCube
object
Methods¶
-
TextureCube.
read
(face, alignment=1) → bytes¶ Read a face from the cubemap texture.
Parameters: face (int) – The face to read. Keyword Arguments: alignment (int) – The byte alignment of the pixels.
-
TextureCube.
read_into
(buffer, face, alignment=1, write_offset=0)¶ Read a face from the cubemap texture.
Parameters: - buffer (bytearray) – The buffer that will receive the pixels.
- face (int) – The face to read.
Keyword Arguments: - alignment (int) – The byte alignment of the pixels.
- write_offset (int) – The write offset.
-
TextureCube.
write
(face, data, viewport=None, alignment=1)¶ Update the content of the texture.
Parameters: - face (int) – The face to update.
- data (bytes) – The pixel data.
- viewport (tuple) – The viewport.
Keyword Arguments: alignment (int) – The byte alignment of the pixels.
-
TextureCube.
use
(location=0)¶ Bind the texture to a texture unit.
The location is the texture unit we want to bind the texture. This should correspond with the value of the
samplerCube
uniform in the shader because samplers read from the texture unit we assign to them:# Define what texture unit our two samplerCube uniforms should represent program['texture_a'] = 0 program['texture_b'] = 1 # Bind textures to the texture units first_texture.use(location=0) second_texture.use(location=1)
Parameters: location (int) – The texture location/unit.
-
TextureCube.
release
()¶ Release the ModernGL object.
Attributes¶
-
TextureCube.
size
¶ The size of the texture.
Type: tuple
-
TextureCube.
dtype
¶ Data type.
Type: str
-
TextureCube.
components
¶ The number of components of the texture.
Type: int
-
TextureCube.
filter
¶ The minification and magnification filter for the texture. (Default
(moderngl.LINEAR. moderngl.LINEAR)
)Example:
texture.filter == (moderngl.NEAREST, moderngl.NEAREST) texture.filter == (moderngl.LINEAR_MIPMAP_LINEAR, moderngl.LINEAR) texture.filter == (moderngl.NEAREST_MIPMAP_LINEAR, moderngl.NEAREST) texture.filter == (moderngl.LINEAR_MIPMAP_NEAREST, moderngl.NEAREST)
Type: tuple
-
TextureCube.
swizzle
¶ The swizzle mask of the texture (Default
'RGBA'
).The swizzle mask change/reorder the
vec4
value returned by thetexture()
function in a GLSL shaders. This is represented by a 4 character string were each character can be:'R' GL_RED 'G' GL_GREEN 'B' GL_BLUE 'A' GL_ALPHA '0' GL_ZERO '1' GL_ONE
Example:
# Alpha channel will always return 1.0 texture.swizzle = 'RGB1' # Only return the red component. The rest is masked to 0.0 texture.swizzle = 'R000' # Reverse the components texture.swizzle = 'ABGR'
Type: str
-
TextureCube.
anisotropy
¶ Number of samples for anisotropic filtering (Default
1.0
). The value will be clamped in range1.0
andctx.max_anisotropy
.Any value greater than 1.0 counts as a use of anisotropic filtering:
# Disable anisotropic filtering texture.anisotropy = 1.0 # Enable anisotropic filtering suggesting 16 samples as a maximum texture.anisotropy = 16.0
Type: float
-
TextureCube.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
TextureCube.
mglo
¶ Internal representation for debug purposes only.
-
TextureCube.
extra
¶ Any - Attribute for storing user defined objects
-
TextureCube.
ctx
¶ The context this object belongs to
Framebuffer¶
-
class
moderngl.
Framebuffer
¶ A
Framebuffer
is a collection of buffers that can be used as the destination for rendering. The buffers for Framebuffer objects reference images from either Textures or Renderbuffers.Create a
Framebuffer
usingContext.framebuffer()
.
Create¶
-
Context.
simple_framebuffer
(size, components=4, samples=0, dtype='f1') → Framebuffer Creates a
Framebuffer
with a single color attachment and depth buffer usingmoderngl.Renderbuffer
attachments.Parameters: - size (tuple) – The width and height of the renderbuffer.
- components (int) – The number of components 1, 2, 3 or 4.
Keyword Arguments: - samples (int) – The number of samples. Value 0 means no multisample format.
- dtype (str) – Data type.
Returns: Framebuffer
object
-
Context.
framebuffer
(color_attachments=(), depth_attachment=None) → Framebuffer A
Framebuffer
is a collection of buffers that can be used as the destination for rendering. The buffers for Framebuffer objects reference images from either Textures or Renderbuffers.Parameters: - color_attachments (list) – A list of
Texture
orRenderbuffer
objects. - depth_attachment (Renderbuffer or Texture) – The depth attachment.
Returns: Framebuffer
object- color_attachments (list) – A list of
Methods¶
-
Framebuffer.
clear
(red=0.0, green=0.0, blue=0.0, alpha=0.0, depth=1.0, viewport=None, color=None)¶ Clear the framebuffer.
If a viewport passed in, a scissor test will be used to clear the given viewport. This viewport take prescense over the framebuffers
scissor
. Clearing can still be done with scissor if no viewport is passed in.This method also respects the
color_mask
anddepth_mask
. It can for example be used to only clear the depth or color buffer or specific components in the color buffer.If the viewport is a 2-tuple it will clear the
(0, 0, width, height)
where(width, height)
is the 2-tuple.If the viewport is a 4-tuple it will clear the given viewport.
Parameters: - red (float) – color component.
- green (float) – color component.
- blue (float) – color component.
- alpha (float) – alpha component.
- depth (float) – depth value.
Keyword Arguments: - viewport (tuple) – The viewport.
- color (tuple) – Optional tuple replacing the red, green, blue and alpha arguments
-
Framebuffer.
read
(viewport=None, components=3, attachment=0, alignment=1, dtype='f1') → bytes¶ Read the content of the framebuffer.
Parameters: - viewport (tuple) – The viewport.
- components (int) – The number of components to read.
Keyword Arguments: - attachment (int) – The color attachment.
- alignment (int) – The byte alignment of the pixels.
- dtype (str) – Data type.
Returns: bytes
-
Framebuffer.
read_into
(buffer, viewport=None, components=3, attachment=0, alignment=1, dtype='f1', write_offset=0)¶ Read the content of the framebuffer into a buffer.
Parameters: - buffer (bytearray) – The buffer that will receive the pixels.
- viewport (tuple) – The viewport.
- components (int) – The number of components to read.
Keyword Arguments: - attachment (int) – The color attachment.
- alignment (int) – The byte alignment of the pixels.
- dtype (str) – Data type.
- write_offset (int) – The write offset.
-
Framebuffer.
use
()¶ Bind the framebuffer. Sets the target for rendering commands.
-
Framebuffer.
release
()¶ Release the ModernGL object.
Attributes¶
-
Framebuffer.
viewport
¶ Get or set the viewport of the framebuffer.
Type: tuple
-
Framebuffer.
scissor
¶ Get or set the scissor box of the framebuffer.
When scissor testing is enabled fragments outside the defined scissor box will be discarded. This applies to rendered geometry or
Framebuffer.clear()
.Setting is value enables scissor testing in the framebuffer. Setting the scissor to
None
disables scissor testing and reverts the scissor box to match the framebuffer size.Example:
# Enable scissor testing >>> ctx.scissor = 100, 100, 200, 100 # Disable scissor testing >>> ctx.scissor = None
Type: tuple
-
Framebuffer.
color_mask
¶ The color mask of the framebuffer.
Color masking controls what components in color attachments will be affected by fragment write operations. This includes rendering geometry and clearing the framebuffer.
Default value:
(True, True, True, True)
.Examples:
# Block writing to all color components (rgba) in color attachments fbo.color_mask = False, False, False, False # Re-enable writing to color attachments fbo.color_mask = True, True, True, True # Block fragment writes to alpha channel fbo.color_mask = True, True, True, False
Type: tuple
-
Framebuffer.
depth_mask
¶ The depth mask of the framebuffer.
Depth mask enables or disables write operations to the depth buffer. This also applies when clearing the framebuffer. If depth testing is enabled fragments will still be culled, but the depth buffer will not be updated with new values. This is a very useful tool in many rendering techniques.
Default value:
True
Type: bool
-
Framebuffer.
width
¶ The width of the framebuffer.
Framebuffers created by a window will only report its initial size. It’s better get size information from the window itself.
Type: int
-
Framebuffer.
height
¶ The height of the framebuffer.
Framebuffers created by a window will only report its initial size. It’s better get size information from the window itself.
Type: int
-
Framebuffer.
size
¶ The size of the framebuffer.
Framebuffers created by a window will only report its initial size. It’s better get size information from the window itself.
Type: tuple
-
Framebuffer.
samples
¶ The samples of the framebuffer.
Type: int
-
Framebuffer.
bits
¶ The bits of the framebuffer.
Type: dict
-
Framebuffer.
color_attachments
¶ The color attachments of the framebuffer.
Type: tuple
-
Framebuffer.
depth_attachment
¶ The depth attachment of the framebuffer.
Type: Texture or Renderbuffer
-
Framebuffer.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
Framebuffer.
mglo
¶ Internal representation for debug purposes only.
-
Framebuffer.
extra
¶ Any - Attribute for storing user defined objects
-
Framebuffer.
ctx
¶ The context this object belongs to
Renderbuffer¶
-
class
moderngl.
Renderbuffer
¶ Renderbuffer objects are OpenGL objects that contain images. They are created and used specifically with
Framebuffer
objects. They are optimized for use as render targets, whileTexture
objects may not be, and are the logical choice when you do not need to sample from the produced image. If you need to resample, use Textures instead. Renderbuffer objects also natively accommodate multisampling.A Renderbuffer object cannot be instantiated directly, it requires a context. Use
Context.renderbuffer()
orContext.depth_renderbuffer()
to create one.
Create¶
-
Context.
renderbuffer
(size, components=4, samples=0, dtype='f1') → Renderbuffer Renderbuffer
objects are OpenGL objects that contain images. They are created and used specifically withFramebuffer
objects.Parameters: - size (tuple) – The width and height of the renderbuffer.
- components (int) – The number of components 1, 2, 3 or 4.
Keyword Arguments: - samples (int) – The number of samples. Value 0 means no multisample format.
- dtype (str) – Data type.
Returns: Renderbuffer
object
-
Context.
depth_renderbuffer
(size, samples=0) → Renderbuffer Renderbuffer
objects are OpenGL objects that contain images. They are created and used specifically withFramebuffer
objects.Parameters: size (tuple) – The width and height of the renderbuffer. Keyword Arguments: samples (int) – The number of samples. Value 0 means no multisample format. Returns: Renderbuffer
object
Attributes¶
-
Renderbuffer.
width
¶ The width of the renderbuffer.
Type: int
-
Renderbuffer.
height
¶ The height of the renderbuffer.
Type: int
-
Renderbuffer.
size
¶ The size of the renderbuffer.
Type: tuple
-
Renderbuffer.
samples
¶ The samples of the renderbuffer.
Type: int
-
Renderbuffer.
components
¶ The components of the renderbuffer.
Type: int
-
Renderbuffer.
depth
¶ Is the renderbuffer a depth renderbuffer?
Type: bool
-
Renderbuffer.
dtype
¶ Data type.
Type: str
-
Renderbuffer.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
Renderbuffer.
mglo
¶ Internal representation for debug purposes only.
-
Renderbuffer.
extra
¶ Any - Attribute for storing user defined objects
-
Renderbuffer.
ctx
¶ The context this object belongs to
Scope¶
-
class
moderngl.
Scope
¶ This class represents a Scope object.
Responsibilities on enter:
- Set the enable flags.
- Bind the framebuffer.
- Assigning textures to texture locations.
- Assigning buffers to uniform buffers.
- Assigning buffers to shader storage buffers.
Responsibilities on exit:
- Restore the enable flags.
- Restore the framebuffer.
Create¶
-
Context.
scope
(framebuffer=None, enable_only=None, textures=(), uniform_buffers=(), storage_buffers=(), samplers=(), enable=None) → Scope Create a
Scope
object.Parameters: - framebuffer (Framebuffer) – The framebuffer to use when entering.
- enable_only (int) – The enable_only flags to set when entering.
Keyword Arguments: - textures (list) – List of (texture, binding) tuples.
- uniform_buffers (list) – List of (buffer, binding) tuples.
- storage_buffers (list) – List of (buffer, binding) tuples.
- samplers (list) – List of sampler bindings
- enable (int) – Flags to enable for this vao such as depth testing and blending
Attributes¶
-
Scope.
extra
¶ Any - Attribute for storing user defined objects
-
Scope.
mglo
¶ Internal representation for debug purposes only.
-
Scope.
ctx
¶ The context this object belongs to
Examples¶
Simple scope example
scope1 = ctx.scope(fbo1, moderngl.BLEND)
scope2 = ctx.scope(fbo2, moderngl.DEPTH_TEST | moderngl.CULL_FACE)
with scope1:
# do some rendering
with scope2:
# do some rendering
Scope for querying
query = ctx.query(samples=True)
scope = ctx.scope(ctx.screen, moderngl.DEPTH_TEST | moderngl.RASTERIZER_DISCARD)
with scope, query:
# do some rendering
print(query.samples)
Understanding what scope objects do
scope = ctx.scope(
framebuffer=framebuffer1,
enable_only=moderngl.BLEND,
textures=[
(texture1, 4),
(texture2, 3),
],
uniform_buffers=[
(buffer1, 6),
(buffer2, 5),
],
storage_buffers=[
(buffer3, 8),
],
)
# Let's assume we have some state before entering the scope
some_random_framebuffer.use()
some_random_texture.use(3)
some_random_buffer.bind_to_uniform_block(5)
some_random_buffer.bind_to_storage_buffer(8)
ctx.enable_only(moderngl.DEPTH_TEST)
with scope:
# on __enter__
# framebuffer1.use()
# ctx.enable_only(moderngl.BLEND)
# texture1.use(4)
# texture2.use(3)
# buffer1.bind_to_uniform_block(6)
# buffer2.bind_to_uniform_block(5)
# buffer3.bind_to_storage_buffer(8)
# do some rendering
# on __exit__
# some_random_framebuffer.use()
# ctx.enable_only(moderngl.DEPTH_TEST)
# Originally we had the following, let's see what was changed
some_random_framebuffer.use() # This was restored hurray!
some_random_texture.use(3) # Have to restore it manually.
some_random_buffer.bind_to_uniform_block(5) # Have to restore it manually.
some_random_buffer.bind_to_storage_buffer(8) # Have to restore it manually.
ctx.enable_only(moderngl.DEPTH_TEST) # This was restored too.
# Scope objects only do as much as necessary.
# Restoring the framebuffer and enable flags are lowcost operations and
# without them you could get a hard time debugging the application.
Query¶
-
class
moderngl.
Query
¶ This class represents a Query object.
Create¶
-
Context.
query
(samples=False, any_samples=False, time=False, primitives=False) → Query Create a
Query
object.Keyword Arguments: - samples (bool) – Query
GL_SAMPLES_PASSED
or not. - any_samples (bool) – Query
GL_ANY_SAMPLES_PASSED
or not. - time (bool) – Query
GL_TIME_ELAPSED
or not. - primitives (bool) – Query
GL_PRIMITIVES_GENERATED
or not.
- samples (bool) – Query
Attributes¶
-
Query.
samples
¶ The number of samples passed.
Type: int
-
Query.
primitives
¶ The number of primitives generated.
Type: int
-
Query.
elapsed
¶ The time elapsed in nanoseconds.
Type: int
-
Query.
crender
¶ Can be used in a
with
statement.Type: ConditionalRender
-
Query.
extra
¶ Any - Attribute for storing user defined objects
-
Query.
mglo
¶ Internal representation for debug purposes only.
-
Query.
ctx
¶ The context this object belongs to
Examples¶
Simple query example
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | import moderngl
import numpy as np
ctx = moderngl.create_standalone_context()
prog = ctx.program(
vertex_shader='''
#version 330
in vec2 in_vert;
void main() {
gl_Position = vec4(in_vert, 0.0, 1.0);
}
''',
fragment_shader='''
#version 330
out vec4 color;
void main() {
color = vec4(1.0, 0.0, 0.0, 1.0);
}
''',
)
vertices = np.array([
0.0, 0.0,
1.0, 0.0,
0.0, 1.0,
], dtype='f4')
vbo = ctx.buffer(vertices.tobytes())
vao = ctx.simple_vertex_array(prog, vbo, 'in_vert')
fbo = ctx.simple_framebuffer((64, 64))
fbo.use()
query = ctx.query(samples=True, time=True)
with query:
vao.render()
print('It took %d nanoseconds' % query.elapsed)
print('to render %d samples' % query.samples)
|
Output
It took 13529 nanoseconds
to render 496 samples
ConditionalRender¶
-
class
moderngl.
ConditionalRender
¶ This class represents a ConditionalRender object.
ConditionalRender objects can only be accessed from
Query
objects.
Examples¶
Simple conditional rendering example
query = ctx.query(any_samples=True)
with query:
vao1.render()
with query.crender:
print('This will always get printed')
vao2.render() # But this will be rendered only if vao1 has passing samples.
ComputeShader¶
-
class
moderngl.
ComputeShader
¶ A Compute Shader is a Shader Stage that is used entirely for computing arbitrary information. While it can do rendering, it is generally used for tasks not directly related to drawing.
- Compute shaders support uniforms are other member object just like a
moderngl.Program
. - Storage buffers can be bound using
Buffer.bind_to_storage_buffer()
. - Uniform buffers can be bound using
Buffer.bind_to_uniform_block()
. - Images can be bound using
Texture.bind_to_image()
.
- Compute shaders support uniforms are other member object just like a
Create¶
-
Context.
compute_shader
(source) → ComputeShader A
ComputeShader
is a Shader Stage that is used entirely for computing arbitrary information. While it can do rendering, it is generally used for tasks not directly related to drawing.Parameters: source (str) – The source of the compute shader. Returns: ComputeShader
object
Methods¶
-
ComputeShader.
run
(group_x=1, group_y=1, group_z=1)¶ Run the compute shader.
Parameters: - group_x (int) – The number of work groups to be launched in the X dimension.
- group_y (int) – The number of work groups to be launched in the Y dimension.
- group_z (int) – The number of work groups to be launched in the Z dimension.
-
ComputeShader.
get
(key, default) → Union[Uniform, UniformBlock, Subroutine, Attribute, Varying]¶ Returns a Uniform, UniformBlock, Subroutine, Attribute or Varying.
Parameters: default – This is the value to be returned in case key does not exist. Returns: Uniform
,UniformBlock
,Subroutine
,Attribute
orVarying
-
ComputeShader.
release
()¶ Release the ModernGL object.
-
ComputeShader.
__eq__
(other)¶ Compares to compute shaders ensuring the internal opengl name/id is the same
-
ComputeShader.
__getitem__
(key) → Union[Uniform, UniformBlock, Subroutine, Attribute, Varying]¶ Get a member such as uniforms, uniform blocks, subroutines, attributes and varyings by name.
# Get a uniform uniform = program['color'] # Uniform values can be set on the returned object # or the `__setitem__` shortcut can be used. program['color'].value = 1.0, 1.0, 1.0, 1.0 # Still when writing byte data we need to use the `write()` method program['color'].write(buffer)
-
ComputeShader.
__setitem__
(key, value)¶ Set a value of uniform or uniform block
# Set a vec4 uniform uniform['color'] = 1.0, 1.0, 1.0, 1.0 # Optionally we can store references to a member and set the value directly uniform = program['color'] uniform.value = 1.0, 0.0, 0.0, 0.0 uniform = program['cameraMatrix'] uniform.write(camera_matrix)
-
ComputeShader.
__iter__
() → Generator[str, NoneType, NoneType]¶ Yields the internal members names as strings. This includes all members such as uniforms, attributes etc.
Attributes¶
-
ComputeShader.
glo
¶ The internal OpenGL object. This values is provided for debug purposes only.
Type: int
-
ComputeShader.
mglo
¶ Internal representation for debug purposes only.
-
ComputeShader.
extra
¶ Any - Attribute for storing user defined objects
-
ComputeShader.
ctx
¶ The context this object belongs to
Miscellaneous¶
Differences between ModernGL5 and ModernGL4¶
Program Creation¶
ModernGL4
my_program = ctx.program([ # extra list
# vertex_shader returned a Shader object
ctx.vertex_shader('''
...
'''),
# fragment_shader returned a Shader object
ctx.fragment_shader('''
...
'''),
])
ModernGL5
my_program = ctx.program( # no list needed
# vertex_shader is a keyword argument
vertex_shader='''
...
''',
# fragment_shader is a keyword argument
fragment_shader='''
...
''',
)
Program Varyings¶
ModernGL4
my_program = ctx.program(
ctx.vertex_shader('''
...
'''),
['out_vert', 'out_norm'] # no keyword argument needed
])
ModernGL5
my_program = ctx.program(
vertex_shader='''
...
''',
varyings=['out_vert', 'out_norm'], # varyings are explicitly given
)
Program Members¶
ModernGL4
my_program.uniforms['ModelViewMatrix'].value = ...
my_program.uniform_buffers['UniformBuffer'].binding = ...
ModernGL5
my_program['ModelViewMatrix'].value = ...
my_program['UniformBuffer'].binding = ...
Texture Pixel Types¶
ModernGL4
my_texture = ctx.texture(size, 4, floats=True) # floats or not floats
ModernGL5
my_texture = ctx.texture(size, 4, dtype='f4') # floats=True
my_texture = ctx.texture(size, 4, dtype='f2') # half-floats
my_texture = ctx.texture(size, 4, dtype='f1') # floats=False
my_texture = ctx.texture(size, 4, dtype='i4') # integers
This also apply for Texture3D
, TextureCube
and Renderbuffer
.
Buffer Format¶
ModernGL4
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '3f3f', ['in_vert', 'in_norm']), # extra list object
# ^ no space between the attributes
...
])
ModernGL5
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '3f 3f', 'in_vert', 'in_norm'), # no list needed
# ^ space is obligatory
...
])
Buffer Format Half-Floats¶
ModernGL4
Not available in ModernGL4
ModernGL5
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '3f2 3f2', 'in_vert', 'in_norm'), # '3f2' means '3' of 'f2', where 'f2' is a half-float
...
])
Buffer Format Padding¶
ModernGL4
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '3f12x', ['in_vert']), # same as above, in_norm was replaced with padding
...
])
ModernGL5
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '3f 3x4', ['in_vert']), # '3x4' means '3' of 'x4', where 'x4' means 4 bytes of padding
...
])
Buffer Format Errors¶
Let’s assume in_vert
was declared as: in vec4 in_vert
ModernGL4
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '3f', ['in_vert']), # throws an error (3 != 4)
...
])
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '4i', ['in_vert']), # throws an error (float != int)
...
])
ModernGL5
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '3f', 'in_vert'), # totally fine
...
])
my_vertex_array = ctx.vertex_array(prog, [
(vbo1, '4i', 'in_vert'), # totally fine
...
])
Found something not covered here? Please file an issue.